Skip to main content
Log in

Block masonry as equivalent micropolar continua: the role of relative rotations

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A description of brick/block masonry by continua equivalent to discrete systems made of blocks of different geometry and texture is proposed in this paper. Here, the reasons for the selection of a micropolar continuum with respect to the classical continuum are discussed. As recent research in various micromorphic multifield formulations shows, the problem of the choice of the most appropriate continuum to model masonry mechanical behavior is still open, and the advantages of non-classical continuum modeling are not yet completely ascertained. Earlier analyses performed on masonry panels in the presence of load and geometrical singularities pointed out the significant role of the additional degree of freedom of the micropolar continuum (microrotation) and of its gradient. The present study aims to expand the investigation into the consequences of changes in blocks’ shape, size and arrangement on the response of block masonry panels under shear forces. This analysis points out the greater effectiveness of micropolar models in capturing the gross structural response of masonry, with respect to the classical modeling. The cases analyzed herein show that apart from the very peculiar case of orthotetragonal symmetry, not only the gradient of microrotation but also the relative rotation between the local rigid rotation and the microrotation, to which relevant non-symmetric strains correspond, are predominant in the majority of the performed numerical tests. Models lacking in these strain measures are therefore inappropriate. The results obtained, ascertained by analyses performed on discrete block assemblies, point out that the micropolar continuum provides a proper description of the masonry behavior. Moreover, the differences between micropolar and classical models remain when the internal lengths vanish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nappi A., Tin-Loi F.: A numerical model for masonry implemented in the framework of a discrete formulation. Struct. Eng. Mech. 11(2), 171–184 (2001)

    Google Scholar 

  2. Baggio, C., Trovalusci, P.: Stone assemblies under in-plane actions. Comparison between nonlinear discrete approaches. In: Middleton, J., Pande, G.N. (eds.) Computer Methods in Structural Masonry-3, pp. 184–193. BIJ, Swansea (1995)

  3. Camborde F., Mariotti C., Donzè C.: Numerical study of rock and concrete behaviour by discrete element modelling. Comput. Geotech. 27, 225–247 (2000)

    Article  Google Scholar 

  4. Baggio C., Trovalusci P.: Collapse behaviour of three-dimensional brick-block systems using non linear programming. Struct. Eng. Mech. 10(2), 181–195 (2000)

    Google Scholar 

  5. Sanchez-Palencia, E., Zaoui, A. (eds.): Homogenization Techniques for Composite Media. Springer, Berlin (1987)

    MATH  Google Scholar 

  6. Anthoine A.: Derivation of the in-plane elastic characteristics of masonry through homogenization theory. Int. J. Solids Struct. 32(2), 137–163 (1995)

    Article  MATH  Google Scholar 

  7. Lourenço P.B.: Computational Strategies for Masonry Structures. Ph.D. Thesis. Delft University of Technology, The Netherlands (1996)

    Google Scholar 

  8. Forest S., Sab K.: Cosserat overall modeling of heterogeneous materials. Mech. Res. Commun. 25, 449–454 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ostoja-Starzewski M., Boccara S.D., Jasiuk I.: Couple-stress moduli and characteristic length of a two-phase composite. Mech. Res. Commun. 26(4), 387–396 (1999)

    Article  MATH  Google Scholar 

  10. Forest S., Dendievel R., Canova G.R.: Estimating the overall properties of heterogeneous Cosserat materials. Model. Simul. Mater. Sci. Eng. 7, 829–840 (1999)

    Article  Google Scholar 

  11. Trovalusci P., Masiani R.: Non-linear micropolar and classical continua for anisotropic discontinuous materials. Int. J. Solids Struct. 40, 1281–1297 (2003)

    Article  MATH  Google Scholar 

  12. Trovalusci P., Masiani R.: A multi-field model for blocky materials based on multiscale description. Int. J. Solids Struct. 42, 5778–5794 (2005)

    Article  MATH  Google Scholar 

  13. Besdo D.: Towards a Cosserat-theory describing motion of an originally rectangular structure of blocks. Arch. Appl. Mech. 80, 25–45 (2010)

    Article  MATH  Google Scholar 

  14. Stefanou I., Sulem J., Vardoulakis I.: Homogenization of interlocking masonry structures using a generalized differential expansion technique. Int. J. Solids Struct. 47, 1522–1536 (2010)

    Article  MATH  Google Scholar 

  15. De Bellis, M.L., Addessi, D.: A Cosserat based multiscale model for masonry structures. In: Trovalusci, P., Ostoja-Starzewski M. (eds.) Multiscale Mechanical Modelling of Complex Materials. Int. J. Multiscale Comput. Eng. 9(5), 543–563 (2011)

  16. Bacigalupo, A., Gambarotta, L.: Non-local computational homogenization of periodic masonry. In: Trovalusci, P., Ostoja-Starzewski M. (eds.) Multiscale mechanical Modelling of Complex Materials. Int. J. Multiscale Comput. Eng. 9(5), 565–578 (2011)

  17. Sluys L., de Borst R., Mhlhaus H.-B.: Wave propagation, localization and dispersion in a gradient-dependent medium. Int. J. Solids Struct. 30(9), 1153–1171 (1993)

    Article  MATH  Google Scholar 

  18. Capriz G.: Continua with Microstructure. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  19. Eringen A.C.: Microcontinuum Field Theories. Springer, New York (1999)

    Book  MATH  Google Scholar 

  20. Capriz G., Podio-Guidugli P.: Whence the boundary conditions in modern continuum physics?. Atti dei Convegni Lincei 210, 19–42 (2004)

    Google Scholar 

  21. Forest S., Trinh D.K.: Generalised continua and the mechanics of heterogeneous materials. Z. angew. Math. Mech. 91, 90–109 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Trovalusci P., Capecchi D., Ruta G.: Genesis of the multiscale approach for materials with microstructure. Arch. Appl. Mech. (Ingenieur-Archiv) 79, 981–997 (2009)

    Article  MATH  Google Scholar 

  23. Capecchi D., Ruta G., Trovalusci P.: From classical to Voigt’s molecular models in elasticity. Arch. Hist. Exact Sci. 64, 525–559 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Capecchi D., Ruta G., Trovalusci P.: Voigt and Poincaré’s mechanistic-energetic approaches to linear elasticity and suggestions for multiscale modelling. Arch. Appl. Mech. (Ingenieur-Archiv) 81(11), 1573–1584 (2011). doi:10.1007/S00419-010-0502-Z

    Article  Google Scholar 

  25. Ortiz M., Phillips R.: Nanomechanics of defect in solids. In: Van der Giessen, E., Wu, T. (eds.) Advances in Applied Mechanics, vol. 36, pp. 1–73. Academic Press, San Diego (1999)

    Google Scholar 

  26. Palla P., Ippolito M., Giordano S., Mattoni A., Colombo L.: Atomistic approach to nanomechanics: concepts, methods, and (some) applications. In: Pugno, N. (ed.) The Nanomechanics in Italy, pp. 75–103. Transworld Research Network, Kerala (2007)

    Google Scholar 

  27. Trovalusci P., Masiani R.: Material symmetries of micropolar continua equivalent to lattices. Int. J. Solids Struct. 36(14), 2091–2108 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Muki R., Sternberg E.: The influence of couple-stress concentrations in elastic solids. Zeitschrift für angewandte Mathematik und Physik 16, 611–648 (1965)

    Article  MathSciNet  Google Scholar 

  29. Sternberg E., Muki R.: The effect of couple-stresses on the stress concentration around a crack. Int. J. Solids Struct. 3, 69–95 (1967)

    Article  Google Scholar 

  30. Sokolowski M.: The Theory of Couple-Stresses in Bodies with Constrained Rotations. CISM, Udine (1972)

    MATH  Google Scholar 

  31. Podio-Guidugli P., Vianello V.: The representation problem of constrained linear elasticity. J. Elast. 28, 271–276 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Trovalusci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pau, A., Trovalusci, P. Block masonry as equivalent micropolar continua: the role of relative rotations. Acta Mech 223, 1455–1471 (2012). https://doi.org/10.1007/s00707-012-0662-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0662-8

Keywords

Navigation