Skip to main content
Log in

Thermo-electro-mechanical response of 1–3–2 piezoelectric composites: effect of fiber orientations

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A micromechanics-based analytical model is developed to evaluate the performance of 1–3–2 piezoelectric composite where both matrix and fiber materials are piezoelectrically active. A parametric study is conducted to investigate the effects of variations in the poling characteristics of the fiber phase on the overall thermo-electro-mechanical behavior of a 1–3–2 piezocomposite. The performance of the 1–3–2 composite as a transducer for underwater and biomedical imaging applications is analyzed. The proposed model is capable of predicting the effective properties of the composite subjected to thermo-electro-mechanical loading conditions. The predicted variations in the effective elastic, piezoelectric and dielectric material constants with fiber volume fraction are nonlinear in nature. It is observed that the influence of thermal effects on effective properties of the composite also induces polarization in the composite. The analytical results show that an appropriate selection of the poling characteristics of the individual fiber and matrix phases could lead to the development of a piezocomposite with significant effective properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agbossou A., Richard C., Vigier Y.: Segmented piezoelectric fiber composite for vibration control: fabrication and modelling of electromechanical properties. Comp. Sci. Technol. 63, 871–881 (2002)

    Article  Google Scholar 

  2. Smith R.C.: Smart Material Systems Model Development. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  3. Nelson L.J.: Smart piezoelectric fibre composites. Mater. Sci. Technol. 18, 1245–1256 (2002)

    Article  Google Scholar 

  4. Newnham R.E., Skinner D.P., Cross L.E.: Connectivity and piezoelectric-pyroelectric composites. Mat. Res. Bull. 13, 525–536 (1978)

    Article  Google Scholar 

  5. Uchino K.: Ferroelectric Devices. Marcel Dekker Inc, New York (2000)

    Google Scholar 

  6. Topolov V.Y., Bowen C.R.: Electromechanical properties in composites based on ferroelectrics. Springer, London (2009)

    Google Scholar 

  7. Klicker K.A., Biggers J.V., Newnham R.E.: Composite of PZT and epoxy for hydrostatic transducers application. J. Am. Ceram. Soc. 64, 5–9 (1981)

    Article  Google Scholar 

  8. Avellaneda M., Swart P.J.: Calculating the performance of 1–3 piezocomposites for hydrophone applications: an effective medium approach. J. Acoust. Soc. Am. 103, 1449–1467 (1998)

    Article  Google Scholar 

  9. Ray M.C., Pradhan A.K.: Active damping of laminated thin cylindrical composite panels using vertically/obliquely reinforced 1–3 piezoelectric composites. Acta Mech. 209, 201–218 (2010)

    Article  MATH  Google Scholar 

  10. Sarangi S.K., Ray M. C.: Active damping of geometrically nonlinear vibrations of laminated composite plates using vertically reinforced 1–3 piezoelectric composites. Acta Mech. 222, 363–380 (2011)

    Article  MATH  Google Scholar 

  11. Furukawa T., Fujino K., Fukada E.: Electromechanical properties in the composites of epoxy resin and PZT ceramics. J. Appl. Phys. 15, 2119–2129 (1976)

    Article  Google Scholar 

  12. Taunaumang H., Guy I.L., Chan H.L.W: Electromechanical properties of 1–3 piezoelectric ceramic/piezoelectric polymer composites. J. Appl. Phys. 76, 484–489 (1994)

    Article  Google Scholar 

  13. Chan H.L.W., Ng P.K.L., Choy C.L.: Effect of poling procedure on the properties of lead zirconate titanate/vinylidene fluoride-trifluoroethylene composites. Appl. Phys. Lett. 74, 3029–3031 (1999)

    Article  Google Scholar 

  14. Steinhausen R., Hauke T., Seifert W., Beige H., Watzka W., Seifert S., Sporn D., Starke S., Schönecker A.: Finescaled piezoelectric 1–3 composites: properties and modeling. J. Eur. Ceram. Soc. 19, 1289–1293 (1999)

    Article  Google Scholar 

  15. Guo R., Wang C.A., Yang A.: Piezoelectric properties of the 1–3 type porous lead zirconate titanate ceramics. J. Am. Ceram. Soc. 94, 1794–1799 (2011)

    Article  Google Scholar 

  16. Dunn M.L., Taya M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30, 161–175 (1993)

    Article  MATH  Google Scholar 

  17. Kuo W.-S., Huang J.H.: On the effective electroelastic properties of piezoelectric composites containing spatially oriented inclusions. Int. J. Solids Struct. 19, 2445–2461 (1997)

    Article  Google Scholar 

  18. Odegard G.M.: Constitutive modeling of piezoelectric polymer composites. Acta Mater. 52, 5315–5330 (2004)

    Article  Google Scholar 

  19. Kar-Gupta R., Venkatesh T.A.: Electromechanical response of 1–3 piezoelectric composites: an analytical model. Acta Mater. 55, 1093–1108 (2007)

    Article  Google Scholar 

  20. Della C.N., Shu D.: The performance of 1–3 piezoelectric composites with a porous non-piezoelectric matrix. Acta Mater. 56, 754–761 (2008)

    Article  Google Scholar 

  21. Steinhausen R., Hauke T., Seifert W., Beige H., Lange U., Sporn D., Starke S., Schönecker A.: A new method for the determination of elastic properties of thin piezoelectric PZT fibers. Ferroelectrics 268, 53–58 (2002)

    Article  Google Scholar 

  22. Pettermann H.E., Suresh S.: A comprehensive unit cell model: a study of coupled effects in piezoelectric 1–3 composites. Int. J. Solids Struct. 37, 5447–5464 (2000)

    Article  MATH  Google Scholar 

  23. Kar-Gupta R., Venkatesh T.A.: Electromechanical response of 1–3 piezoelectric composites: effect of poling characteristics. J. Appl. Phys. 98, 054102-1 (2005)

    Article  Google Scholar 

  24. Berger H., Kari S., Gabbert U., Rodriguez-Ramos R., Bravo-Castillero J.R., Guinovart-Diaz R.: Evaluation of effective material properties of randomly distributed short cylindrical fiber composites using a numerical homogenization technique. J. Mech. Mater. Struct. 2, 1561–1570 (2007)

    Article  Google Scholar 

  25. Li L., Li-Kun W., Lei Q., Yuan-Yuan W., Hong-Liang D., Bai-Sheng S.: The theoretical model for 1–3–2 piezoelectric composites. Ferroelectrics 350, 29–37 (2007)

    Article  Google Scholar 

  26. Li L., Wang L.K., Luang G.D., Zhang F.X.: Development of 1–3–2 type piezoelectric composite. Piezoelectrics & Acoustooptics 27, 71–73 (2005)

    Google Scholar 

  27. Li L., Lei Q., Li-kun W., Yuan-Yuan W., Bai-Sheng S.: Researching on resonance characteristics influenced by the structure parameters of 1–3–2 piezocomposites plate. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 55, 946–951 (2008)

    Article  Google Scholar 

  28. Li-kun W., Li L., Lei Q., Weiwei W., Tianxiao D.: Study of effective properties of modified 1–3 piezocomposites. J. Appl. Phys. 104, 064120 (2008)

    Google Scholar 

  29. Tauchert T.R.: Piezothermoelastic behavior of a laminated plate. J. Therm. Stress. 15, 25–37 (1992)

    Article  Google Scholar 

  30. Görnandt A., Gabbert U.: Finite element analysis of thermopiezoelectric smart structures. Acta Mech. 154, 129–140 (2002)

    Article  MATH  Google Scholar 

  31. Kumar A., Chakraborty D.: Effective properties of thermo-electro-mechanically coupled piezoelectric fiber reinforced composites. Mat. Design 30, 1216–1222 (2009)

    Article  Google Scholar 

  32. Sakthivel M., Arockiarajan A.: Thermo-electro-mechanical response of 1–3–2 type piezoelectric composites. Smart Mat. Struct. 19, 105033 (2010)

    Article  Google Scholar 

  33. Nan C., Liu L., Guo D., Li L.: Calculations of the effective properties of 1–3 type piezoelectric composites with various rod/fibre orientations. J. Phys. D Appl. Phys. 33, 2977–2984 (2000)

    Article  Google Scholar 

  34. Ren H., Fan H.: The role of piezoelectric rods in 1–3 composite for the hydrostatic response application. Sens. Actuators A-Phys 128, 132–139 (2006)

    Article  Google Scholar 

  35. Barnett D.M., Lothe J.: Dislocations and line charges in anisotropic piezoelectric insulators. Phys. Status Solidi B 67, 105–111 (1975)

    Article  Google Scholar 

  36. Hull D., Clyne T.W.: An Introduction to Composite. Cambridge University Press, New York (1996)

    Google Scholar 

  37. Benveniste Y., Dvorak G.J.: Uniform fields and universal relations in piezoelectric composites. J. Mech. Phys. Solids 40, 1295–1312 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sakthivel M., Arockiarajan A.: An analytical model for predicting thermo-electro-mechanical response of 1–3 piezoelectric composites. Comput. Mater. Sci. 48, 759–767 (2010)

    Article  Google Scholar 

  39. Guang L., Li-kun W., Gui-dong L., Jin-duo Z., Shu-xiang L.: Study of 1–3–2 type piezoelectric composite transducer array. Ultrasonics 44, 673–677 (2006)

    Article  Google Scholar 

  40. Smith W.A., Auld B.A.: Modeling 1–3 composite piezoelectrics: Lthickness-mode oscillations. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 38, 40–47 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arockiarajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakthivel, M., Arockiarajan, A. Thermo-electro-mechanical response of 1–3–2 piezoelectric composites: effect of fiber orientations. Acta Mech 223, 1353–1369 (2012). https://doi.org/10.1007/s00707-012-0652-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0652-x

Keywords

Navigation