Skip to main content
Log in

Reliable modeling of piezoceramic materials utilized in sensors and actuators

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Piezoceramic materials are widely utilized in actuator and sensor devices. In order to model the behavior of these devices and to reduce their development time, numerical simulation tools are frequently applied. However, the simulation results strongly rely on the material behavior assumed for piezoceramics. Here, we present approaches for reliable modeling of this material behavior which have been developed at the Chair of Sensor Technology (Friedrich-Alexander-University Erlangen-Nuremberg) in recent years. Both the small signal behavior and the large signal behavior of piezoceramic materials are discussed. For the identification of material parameters required within the small signal model, we apply a mathematical Inverse Method. The large signal behavior of piezoceramics is described by means of a phenomenological approach that is based on the so-called Preisach hysteresis operator. As the presented results for different piezoceramics clearly show, the utilized modeling approaches lead to reliable simulation results and can, therefore, be applied to predict the behavior of piezoceramic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heywang W., Lubitz K., Wersing W.: Piezoelectricity: Evolution and Future of a Technology. Springer, Berlin (2008)

    Google Scholar 

  2. Bauer S., Gerhard-Multhaupt R., Sessler G.M.: Ferroelectrets: soft electroactive foams for transducers. Phys. Today 57, 37–43 (2004)

    Article  Google Scholar 

  3. Rupitsch S.J., Lerch R., Strobel J., Streicher A.: Ultrasound transducers based on ferroelectret materials. IEEE Trans. Dielectr. Electr. Insulat. 18, 69–80 (2011)

    Article  Google Scholar 

  4. Varadan V.K., Vinoy K.J., Gopalakrishnan S.: Smart Material Systems and MEMS. Wiley, New Jersey (2006)

    Book  Google Scholar 

  5. Irschik H.: A review on static and dynamic shape control of structures by piezoelectric actuation. Eng. Struct. 24, 5–11 (2002)

    Article  Google Scholar 

  6. Irschik H., Krommer M., Pichler U.: Dynamic shape control of beam-type structures by piezoelectric actuation and sensing. Int. J. Appl. Electromagn. Mech. 17, 251–258 (2003)

    Google Scholar 

  7. Irschik H., Krommer M., Vetyukov Y.: On the use of piezoelectric sensors in structural mechanics: some novel strategies. Sensors 10, 5626–5641 (2010)

    Article  Google Scholar 

  8. Neugebauer R., Lachmann L., Drossel W., Nestler M., Hensel S.: Multi-layer compounds with integrated actor-sensor- functionality. Prod. Eng. 4, 379–384 (2010)

    Article  Google Scholar 

  9. Hufenbach, W., Gude, M., Modler, N., Heber, T., Tyczynski, T.: Sensitivity analysis for the process integrated online polarization of piezoceramic modules in thermoplastic composites. Smart Mater. Struct. 19 (2010)

  10. Rübner M., Günzl M., Köner C., Singer R.F.: Aluminium-aluminium compound fabrication by high pressure die casting. Mater. Sci. Eng. A 528, 7024–7029 (2011)

    Article  Google Scholar 

  11. Lerch R., Sessler G.M., Wolf D.: Technische Akustik. Springer, Berlin (2009)

    Book  Google Scholar 

  12. Rupitsch S.J., Zagar B.G.: Acoustic microscopy technique to precisely locate layer delamination. IEEE Trans. Instrum. Meas. 56, 1429–1434 (2007)

    Article  Google Scholar 

  13. Kaltenbacher M.: Numerical Simulation of Mechatronic Sensors and Actuators. Springer, Berlin (2007)

    Google Scholar 

  14. Henning, B., Rautenberg, J., Unverzagt, C., Schröder, A., Olfert, S.: Computer-assisted design of transducers for ultrasonic sensor systems. Meas. Sci. Technol. 20 (2009)

  15. Tichy J., Erhart J., Kittinger E., Privratska J.: Fundamentals of Piezoelectric Sensorics. Springer, Berlin (2010)

    Book  Google Scholar 

  16. IEEE Standard on Piezoelectricity, ANSI-IEEE Std 176-1987 (1988)

  17. Kaltenbacher B., Lahmer T., Mohr M., Kaltenbacher M.: PDE based determination of piezoelectric material tensors. Eur. J. Appl. Math. 17, 383–416 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lahmer T., Kaltenbacher M., Kaltenbacher B., Lerch R., Leder E.: FEM-based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 465–475 (2008)

    Article  Google Scholar 

  19. Rupitsch S.J., Lerch R.: Inverse method to estimate material parameters for piezoceramic disc actuators. Appl. Phys. A Mater. Sci. Process. 97, 735–740 (2009)

    Article  Google Scholar 

  20. Rupitsch, S.J., Wolf, F., Sutor, A., Lerch, R.: Estimation of material parameters for piezoelectric actuators using electrical and mechanical quantities. In: Ultrasonics Symposium (IUS), 2009 IEEE International, pp. 1–4 (2009)

  21. Rupitsch, S.J., Sutor, A., Ilg, J., Lerch, R.: Identification procedure for real and imaginary material parameters of piezoceramic materials. In: Ultrasonics Symposium (IUS), 2010 IEEE International, pp. 1214–1217 (2010)

  22. Rupitsch S.J., Ilg J., Sutor A., Lerch R., Döllinger M.: Simulation based estimation of dynamic mechanical properties for viscoelastic materials used for vocal fold models. J. Sound Vib. 330, 4447–4459 (2011)

    Article  Google Scholar 

  23. Kaltenbacher B., Neubauer A., Scherzer O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems. Walter de Gruyter, Berlin (2009)

    Google Scholar 

  24. Rupitsch S.J., Kindermann S., Zagar B.G.: Estimation of the surface normal velocity of high frequency ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 225–235 (2008)

    Article  Google Scholar 

  25. Rupitsch S.J., Zagar B.G.: Iteration methods to precisely locate edges of hot objects using simple infrared-sensing elements. IEEE Trans. Instrum. Meas. 60, 268–274 (2011)

    Article  Google Scholar 

  26. Kaltenbacher M.: Advanced simulation tool for the design of sensors and actuators. Proc. Eng. 5, 597–600 (2010)

    Article  Google Scholar 

  27. Kamlah M., Böhle U.: Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior. Int. J. Solids Struct. 38, 605–633 (2001)

    Article  MATH  Google Scholar 

  28. Linnemann K., Klinkel S., Wagner W.: A constitutive model for magnetostrictive and piezoelectric materials. Int. J. Solids Struct. 46, 1149–1166 (2009)

    Article  MATH  Google Scholar 

  29. Belov A.Y., Kreher W.S.: Simulation of microstructure evolution in polycrystalline ferroelectrics-ferroelastics. Acta Mater. 54, 3463–3469 (2006)

    Article  Google Scholar 

  30. Huber J.E., Fleck N.A.: Multi-axial electrical switching of a ferroelectric: theory versus experiment. J. Mech. Phys. Solids 49, 785–811 (2001)

    Article  MATH  Google Scholar 

  31. Cima L., Laboure E., Muralt P.: Characterization and model of ferroelectrics based on experimental Preisach density. Rev. Sci. Instrum. 73, 3546 (2002)

    Article  Google Scholar 

  32. Mayergoyz I.: Mathematical Models of Hysteresis and Their Applications. Elsevier, New York (2003)

    Google Scholar 

  33. Hegewald T., Kaltenbacher B., Kaltenbacher M., Lerch R.: Efficient modeling of ferroelectric behavior for the analysis of piezoceramic actuators. J. Intell. Mater. Syst. Struct. 19, 1117–1129 (2008)

    Article  Google Scholar 

  34. Kaltenbacher M., Kaltenbacher B., Hegewald T., Lerch R.: Finite element formulation for ferroelectric hysteresis of piezoelectric materials. J. Intell. Mater. Syst. Struct. 21, 773–785 (2010)

    Article  Google Scholar 

  35. Wolf F., Sutor A., Rupitsch S.J., Lerch R.: Modeling and measurement of hysteresis of ferroelectric actuators considering time-dependent behavior. Proc. Eng. 5, 87–90 (2010)

    Article  Google Scholar 

  36. Sutor A., Rupitsch S.J., Lerch R.: A Preisach-based hysteresis model for magnetic and ferroelectric hysteresis. Appl. Phys. A Mater. Sci. Process. 100, 425–430 (2010)

    Article  Google Scholar 

  37. Wolf F., Sutor A., Rupitsch S.J., Lerch R.: Modeling and measurement of creep- and rate-dependent hysteresis in ferroelectric actuators. Sens. Actuators A Phys. 172, 245–252 (2011)

    Article  Google Scholar 

  38. Preisach F.: Über die magnetische Nachwirkung. Zeitschrift für Physik 94, 277–302 (1935)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan J. Rupitsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rupitsch, S.J., Wolf, F., Sutor, A. et al. Reliable modeling of piezoceramic materials utilized in sensors and actuators. Acta Mech 223, 1809–1821 (2012). https://doi.org/10.1007/s00707-012-0639-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0639-7

Keywords

Navigation