Skip to main content
Log in

Multi-pulse chaotic dynamics of non-autonomous nonlinear system for a honeycomb sandwich plate

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The global bifurcations and multi-pulse chaotic dynamics of a simply supported honeycomb sandwich rectangular plate under combined parametric and transverse excitations are investigated in this paper for the first time. The extended Melnikov method is generalized to investigate the multi-pulse chaotic dynamics of the non-autonomous nonlinear dynamical system. The main theoretical results and the formulas are obtained for the extended Melnikov method of the non-autonomous nonlinear dynamical system. The nonlinear governing equation of the honeycomb sandwich rectangular plate is derived by using the Hamilton’s principle and the Galerkin’s approach. A two-degree-of-freedom non-autonomous nonlinear equation of motion is obtained. It is known that the less simplification processes on the system will result in a better understanding of the behaviors of the multi-pulse chaotic dynamics for high-dimensional nonlinear systems. Therefore, the extended Melnikov method of the non-autonomous nonlinear dynamical system is directly utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the two-degree-of-freedom non-autonomous nonlinear system for the honeycomb sandwich rectangular plate. The theoretical results obtained here indicate that multi-pulse chaotic motions can occur in the honeycomb sandwich rectangular plate. Numerical simulation is also employed to find the multi-pulse chaotic motions of the honeycomb sandwich rectangular plate. It also demonstrates the validation of the theoretical prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liew K.M., Jiang L., Lim M.K., Low S.C.: Numerical evaluation of frequency responses for delaminated honeycomb structures. Comput. Struct. 55, 191–203 (1995)

    Article  MATH  Google Scholar 

  2. Jiang L., Liew K.M., Lim M.K., Low S.C.: Vibratory behavior of delaminated honeycomb structures: A 3-D finite element modeling. Comput. Struct. 55, 773–788 (1995)

    Article  MATH  Google Scholar 

  3. Saito T., Parbery R.D., Kawano S.: Parameter identification for aluminum honeycomb sandwich panels based on orthotropic timoshenko beam theory. J. Sound Vib. 208, 271–287 (1997)

    Article  Google Scholar 

  4. Liew K.M., Lim C.S.: Analysis of dynamic responses of delaminated honeycomb panels. Compos. Struct. 39, 111–121 (1997)

    Article  Google Scholar 

  5. Nilsson E., Nilsson A.C.: Prediction and measurement of some dynamic properties of sandwich structures with honeycomb and foam cores. J. Sound Vib. 251, 409–430 (2002)

    Article  Google Scholar 

  6. Petitjean B., Legrain I.: Active control experiments for acoustic radiation reduction of a sandwich panel: Feedback and feedforward investigations. J. Sound Vib. 252, 19–36 (2002)

    Article  Google Scholar 

  7. Ruzzene M.: Vibration and sound radiation of sandwich beam with honeycomb truss core. J. Sound Vib. 277, 741–763 (2004)

    Article  Google Scholar 

  8. Dear J.P., Lee H., Brown S.A.: Impact damage processes in composite sheet and sandwich honeycomb materials. Int. J. Impact Eng. 32, 130–154 (2005)

    Article  Google Scholar 

  9. Chen A., Davalos J.F.: A solution including skin effect for stiffness and stress field of sandwich honeycomb core. Int. J. Solids Struct. 42, 2711–2739 (2005)

    Article  MATH  Google Scholar 

  10. Zhang W., Song C.Z., Ye M.: Further studies on nonlinear oscillations and chaos of a symmetric cross-ply laminated thin plate under parametric excitation. Int. J. Bifurcat. Chaos. 16, 325–347 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li Z., Crocker M.J.: Effects of thickness and delamination on the damping in honeycomb-foam sandwich beams. J. Sound Vib. 294, 473–485 (2006)

    Article  Google Scholar 

  12. Cielecka I., Jedrysiak J.: A non-asymptotic model of dynamics of honeycomb lattice-type plates. J. Sound Vib. 296, 130–149 (2006)

    Article  Google Scholar 

  13. Vaziri A., Hutchinson J.W.: Metal sandwich plates subject to intense air shocks. Int. J. Solids Struct. 44, 2021–2035 (2007)

    Article  MATH  Google Scholar 

  14. Othman A.R., Barton D.C.: Failure initiation and propagation characteristics of honeycomb sandwich composites. Compos. Struct. 85, 126–138 (2008)

    Article  Google Scholar 

  15. Hao Y.X., Chen L.H., Zhang W., Lei J.G.: Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate. J. Sound Vib. 312, 862–892 (2008)

    Article  Google Scholar 

  16. Hong S.T., Pan J., Tyan T., Prasad P.: Dynamic crush behaviors of aluminum honeycomb specimens under compression dominant inclined loads. Int. J. Plast. 24, 89–117 (2008)

    Article  Google Scholar 

  17. Zarei H., Kroger M.: Optimum honeycomb filled crash absorber design. Mater. Des. 29, 193–204 (2008)

    Article  Google Scholar 

  18. Zhang W., Yao Z.G., Yao M.H.: Periodic and chaotic dynamics of composite laminated piezoelectric rectangular plate with one-to-two internal resonance. Sci. China Ser. E: Technol. Sci. 52, 731–742 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang X.D., Lim C.W., Liew K.: Vibration and stability of an axially moving beam on elastic foundation. Adv. Struct. Eng. 13, 241–247 (2010)

    Article  Google Scholar 

  20. Li Y.Q., Li F., Wei D.W.: Geometrically nonlinear free vibrations of the symmetric rectangular honeycomb sandwich panels with simply supported boundaries. Compos. Struct. 92, 1110–1119 (2010)

    Article  Google Scholar 

  21. Lim C.W.: Symplectic elasticity approach for free vibration of rectangular plates. Adv. Vib. Eng. 9, 159–163 (2010)

    Google Scholar 

  22. Wiggins S.: Global Bifurcation and Chaos-Analytical Methods. Springer, New York (1988)

    Book  Google Scholar 

  23. Kovacic G., Wiggins S.: Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation. Phys. D 57, 185–225 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaper T.J., Kovacic G.: Multi-bump orbits homoclinic to resonance bands. Trans. Am. Math. Soc. 348, 3835–3887 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Camassa R., Kovacic G., Tin S.K.: A Melnikov method for homoclinic orbits with many pulse. Arch. Ration. Mech. Anal. 143, 105–193 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang W., Yao M.H.: Theories of multi-pulse global bifurcations for high-dimensional systems and applications to cantilever beam. Int. J. Mod. Phys. B. 22, 4089–4141 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang W., Yao M.H., Zhang J.H.: Using extended Melnikov method to study multi-pulse global bifurcations and chaos of a cantilever beam. J. Sound Vib. 319, 541–569 (2009)

    Article  Google Scholar 

  28. Zhang J.H., Zhang W., Yao M.H., Guo X.Y.: Multi-pulse Shilnikov chaotic dynamics for a non-autonomous buckled thin plate under parametric excitation. Int. J. Nonlinear Sci. Numer. Simul. 9, 381–394 (2008)

    Article  Google Scholar 

  29. Zhang W., Zhang J.H., Yao M.H.: The extended Melnikov method for non-autonomous nonlinear dynamical system of a buckled thin plate. Nonlinear Anal. Real World Appl. 11, 1422–1457 (2010)

    Article  MathSciNet  Google Scholar 

  30. Li W., Xu P.C.: The existence of Silnikov’s orbits in four-dimensional Duffing’s systems. Acta Math. Appl. Sinica. 19, 677–690 (2003)

    MATH  Google Scholar 

  31. Wiggins S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos Second Edition. Springer, New York (2000)

    Google Scholar 

  32. Sun, J.: Nonlinear Dynamics of Honeycomb Sandwich Plate. Master Thesis, Beijing University of Technology (2008)

  33. Reddy J.N.: Mechanics of Laminated Composite Plates and Shells-Theory and Analysis Second Edition. CRC Press, Boca Raton, FL (2004)

    Google Scholar 

  34. Zhang W., Wang F.X., Zu J.W.: Computation of normal forms for high dimensional nonlinear systems and application to nonplanar motions of a cantilever beam. J. Sound Vib. 278, 949–974 (2004)

    Article  MathSciNet  Google Scholar 

  35. Zhang W., Chen Y., Cao D.X.: Computation of normal forms for eight-dimensional nonlinear dynamical system and application to a viscoelastic moving belt. Int. J. Nonlinear Sci. Numer. Simul. 7, 35–58 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J.H., Zhang, W. Multi-pulse chaotic dynamics of non-autonomous nonlinear system for a honeycomb sandwich plate. Acta Mech 223, 1047–1066 (2012). https://doi.org/10.1007/s00707-012-0618-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0618-z

Keywords

Navigation