Skip to main content
Log in

Strain gradient solution for the Eshelby-type anti-plane strain inclusion problem

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The solution for the Eshelby-type inclusion problem of an infinite elastic body containing an anti-plane strain inclusion prescribed with a uniform eigenstrain and a uniform eigenstrain gradient is derived using a simplified strain gradient elasticity theory (SSGET) that contains one material length scale parameter in addition to two classical elastic constants. The Green’s function based on the SSGET for an infinite three-dimensional elastic body undergoing anti-plane strain deformations is first obtained by employing Fourier transforms. The Eshelby tensor is then analytically derived in a general form for an anti-plane strain inclusion of arbitrary cross-sectional shape using the Green’s function method. By applying this general form, the Eshelby tensor for a circular cylindrical inclusion is obtained explicitly, which is separated into a classical part and a gradient part. The former does not contain any classical elastic constant, while the latter includes the material length scale parameter, thereby enabling the interpretation of the particle size effect. The components of the new Eshelby tensor vary with both the position and the inclusion size, unlike their counterparts based on classical elasticity. For homogenization applications, the average of this Eshelby tensor over the circular cross-sectional area of the inclusion is obtained in a closed form. Numerical results reveal that when the inclusion radius is small, the contribution of the gradient part is significantly large and should not be ignored. Also, it is found that the components of the averaged Eshelby tensor change with the inclusion size: the smaller the inclusion, the smaller the components. These components approach from below the values of their counterparts based on classical elasticity when the inclusion size becomes sufficiently large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arfken G.B., Weber H.-J.: Mathematical Methods for Physicists, 6th edn. Elsevier, San Diego (2005)

    MATH  Google Scholar 

  2. Cheng Z.-Q., He L.-H.: Micropolar elastic fields due to a spherical inclusion. Int. J. Eng. Sci. 33, 389–397 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng Z.-Q., He L.-H.: Micropolar elastic fields due to a circular cylindrical inclusion. Int. J. Eng. Sci. 35, 659–668 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cho J., Joshi M.S., Sun C.T.: Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos. Sci. Tech. 66, 1941–1952 (2006)

    Article  Google Scholar 

  5. Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eshelby J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. A 252, 561–569 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gao X.-L.: A mathematical analysis of the elasto-plastic anti-plane shear problem of a power-law material and one class of closed-form solutions. Int. J. Solids Struct. 33, 2213–2223 (1996)

    Article  MATH  Google Scholar 

  8. Gao X.-L., Li K.: A shear-lag model for carbon nanotube-reinforced polymer composites. Int. J. Solids Struct. 42, 1649–1667 (2005)

    Article  MATH  Google Scholar 

  9. Gao X.-L., Ma H.M.: Green’s function and Eshelby’s tensor based on a simplified strain gradient elasticity theory. Acta Mech. 207, 163–181 (2009)

    Article  MATH  Google Scholar 

  10. Gao X.-L., Ma H.M.: Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory. J. Mech. Phys. Solids 58, 779–797 (2010)

    Article  MathSciNet  Google Scholar 

  11. Gao X.-L., Ma H.M.: Strain gradient solution for Eshelby’s ellipsoidal inclusion problem. Proc. R. Soc. A 466, 2425–2446 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao X.-L., Park S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int. J. Solids Struct. 44, 7486–7499 (2007)

    Article  MATH  Google Scholar 

  13. Gao X.-L., Rowlands R.E.: Hybrid method for stress analysis of finite three-dimensional elastic components. Int. J. Solids Struct. 37, 2727–2751 (2000)

    Article  MATH  Google Scholar 

  14. Haftbaradaran H., Shodja H.M.: Elliptic inhomogeneities and inclusions in anti-plane couple stress elasticity with application to nano-composites. Int. J. Solids Struct. 46, 2978–2987 (2009)

    Article  MATH  Google Scholar 

  15. Kiris A., Inan E.: Eshelby tensors for a spherical inclusion in microstretch elastic fields. Int. J. Solids Struct. 43, 4720–4738 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Le Quang H., He Q.-C., Zheng Q.-S.: Some general properties of Eshelby’s tensor fields in transport phenomena and anti-plane elasticity. Int. J. Solids Struct. 45, 3845–3857 (2008)

    Article  MATH  Google Scholar 

  17. Liu X.N., Hu G.K.: Inclusion problem of microstretch continuum. Int. J. Eng. Sci. 42, 849–860 (2004)

    Article  Google Scholar 

  18. Lubarda V.A.: Circular inclusions in anti-plane strain couple stress elasticity. Int. J. Solids Struct. 40, 3827–3851 (2003)

    Article  MATH  Google Scholar 

  19. Ma H.M., Gao X.-L.: Eshelby’s tensors for plane strain and cylindrical inclusions based on a simplified strain gradient elasticity theory. Acta Mech. 211, 115–129 (2010)

    Article  MATH  Google Scholar 

  20. Ma H.M., Gao X.-L.: Strain gradient solution for a finite-domain Eshelby-type plane strain inclusion problem and Eshelby’s tensor for a cylindrical inclusion in a finite elastic matrix. Int. J. Solids Struct. 48, 44–55 (2011)

    Article  MATH  Google Scholar 

  21. Ma H.S., Hu G.K.: Eshelby tensors for an ellipsoidal inclusion in a micropolar material. Int. J. Eng. Sci. 44, 595–605 (2006)

    Article  Google Scholar 

  22. Ma H.S., Hu G.K.: Eshelby tensors for an ellipsoidal inclusion in a microstretch material. Int. J. Solids Struct. 44, 3049–3061 (2007)

    Article  MATH  Google Scholar 

  23. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mindlin R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  25. Mindlin R.D., Eshel N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  26. Pak Y.E.: Circular inclusion problem in antiplane piezoelectricity. Int. J. Solids Struct. 29, 2403–2419 (1992)

    Article  MATH  Google Scholar 

  27. Timoshenko S.P., Goodier J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  28. Vollenberg P.H.T., Heikens D.: Particle size dependence of the Young’s modulus of filled polymers: 1 preliminary experiments. Polymer 30, 1656–1662 (1989)

    Article  Google Scholar 

  29. Xu B.X., Wang M.Z.: The arithmetic mean theorem for the N-fold rotational symmetrical inclusion in anti-plane elasticity. Acta Mech. 194, 233–242 (2007)

    Article  MATH  Google Scholar 

  30. Zheng Q.-S., Zhao Z.-H.: Green’s function and Eshelby’s fields in couple-stress elasticity. Int. J. Multiscale Comput. Eng. 2, 15–27 (2004)

    Article  Google Scholar 

  31. Zou W.-N., Zheng Q.-S., He Q.-C.: Solutions to Eshelby’s problems of non-elliptical thermal inclusions and cylindrical elastic inclusions of non-elliptical cross section. Proc. R. Soc. A 467, 607–626 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. -L. Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, X.L., Ma, H.M. Strain gradient solution for the Eshelby-type anti-plane strain inclusion problem. Acta Mech 223, 1067–1080 (2012). https://doi.org/10.1007/s00707-012-0614-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0614-3

Keywords

Navigation