Skip to main content
Log in

Homogenization of viscoelastic composites with fibres of diamond-shaped cross-section

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present paper provides details on the application of asymptotic homogenization techniques to the analysis of viscoelastic composite materials with fibres of diamond-shaped cross-section. The Correspondence principle allows transforming the governing boundary value problems to quasistatic ones. Then, we apply the homogenization approach. For solving the cell problem for small volume fractions, the boundary shape perturbation procedure and the composite cylinder assemblage model are used. For a volume fraction equal to 1/2, we use the Dykhne–Keller–Mendelson formula. Matching of limit solutions by two-point Padé approximants gives a formula for the effective properties valid for any volume fraction from the interval [0, 0.5].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate J., Whitt W.: A unified framework for numerically inverting Laplace transforms. INFORMS J. Comput. 18, 408–421 (2006)

    Article  MathSciNet  Google Scholar 

  2. Andrianov I.V., Awrejcewicz J., Manevitch L.I.: Asymptotical Mechanics of Thin-Walled Structures: A Handbook. Springer, Berlin (2004)

    Google Scholar 

  3. Andrianov I.V., Topol H., Weichert D.: Load transfer in fibre-reinforced composites with viscoelastic matrix: an analytical study. Arch. Appl. Mech. 11, 999–1007 (2009)

    Article  Google Scholar 

  4. Baker G.A. Jr., Graves-Morris P.: Padé Approximants, 2nd edn. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  5. Batchelor G.K.: Transport properties of two-phase materials with random structure. Annu. Rev. Fluid Mech. 6, 227–254 (1974)

    Article  Google Scholar 

  6. Beurthey S., Zaoui A.: Structural morphology and relaxation spectra of viscoelastic heterogeneous materials. Eur. J. Mech. A/Solids 19, 1–16 (2000)

    Article  MATH  Google Scholar 

  7. Brinson L.C., Lin W.S.: Comparison methods for effective properties of multiphase viscoelastic composites. Comp. Struct. 41, 353–367 (1998)

    Article  Google Scholar 

  8. Christensen R.M.: Theory of Viscoelasticity, 2nd edn. Dover Publications, Mineola (2003)

    Google Scholar 

  9. Christensen R.M.: Mechanics of Composite Materials. Dover Publications, Mineola (2005)

    Google Scholar 

  10. Dykhne A.M.: Conductivity of a two-dimensional system. Sov. Phys. JETP 32, 63–65 (1970)

    Google Scholar 

  11. Gibiansky L.V., Milton G.W., Berryman J.G.: On the effective viscoelastic moduli of two-phase media. III. Rigorous bounds on the complex shear modulus in two dimensions. Proc. R. Soc. A 455, 2117–2149 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guz A.N., Nemish Y.N.: Perturbation of boundary shape in continuum mechanics. Sov. Appl. Mech. 9, 799–822 (1987)

    Article  Google Scholar 

  13. Hashin Z.: Viscoelastic behavior of heterogeneous media. J. Appl. Mech. 8, 630–636 (1965)

    Article  Google Scholar 

  14. Hashin Z.: Viscoelastic fiber reinforced materials. AIAA J. 8, 1411–1417 (1966)

    Article  Google Scholar 

  15. Kalamkarov A.L., Andrianov I.V., Danishevs’kyy V.V.: Asymptotic homogenization of composite materials and structures. Appl. Mech. Rev. 3, 030802-1–030802-20 (2009)

    Google Scholar 

  16. Keller J.B.: A theorem on the conductivity of a composite medium. J. Math. Phys. 5, 548–549 (1964)

    Article  MATH  Google Scholar 

  17. Mendelson K.S.: A theorem on the effective conductivity of a two-dimensional heterogeneous medium. J. Appl. Phys. 46, 4740–4741 (1975)

    Article  Google Scholar 

  18. Milton G.W.: The Theory of Composites. Cambridge UP, Cambridge (2002)

    Book  MATH  Google Scholar 

  19. Milton G.W., McPhedran R.C., McKenzie D.R.: Transport properties of arrays of intersecting cylinders. Appl. Phys. 25, 23–30 (1981)

    Article  Google Scholar 

  20. Pobedrya B.Y.: On the theory of viscoelasticity of structurally inhomogeneous media. J. Appl. Math. Mech. 47, 103–109 (1983)

    Google Scholar 

  21. Pobedrya B.Y.: Mechanics of Composite Materials. MGU, Moscow (1984)

    MATH  Google Scholar 

  22. Scheiner S., Hellmich C.: Continuum microviscoelasticity model for aging basic creep of early-age concrete. J. Eng. Mech. 135, 307–323 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor V. Andrianov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrianov, I.V., Danishevs’kyy, V.V. & Kholod, E.G. Homogenization of viscoelastic composites with fibres of diamond-shaped cross-section. Acta Mech 223, 1093–1100 (2012). https://doi.org/10.1007/s00707-011-0608-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0608-6

Keywords

Navigation