Skip to main content
Log in

Direct numerical simulation of pipe flow using a solenoidal spectral method

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, a numerical method based on solenoidal basis functions, for the simulation of incompressible flow through a circular–cylindrical pipe, is presented. The solenoidal bases utilized in the study are formulated using the Legendre polynomials. Legendre polynomials are favorable, both for the form of the basis functions and for the inner product integrals arising from the Galerkin-type projection used. The projection is performed onto the dual solenoidal bases, eliminating the pressure variable, simplifying the numerical approach to the problem. The success of the scheme in calculating turbulence statistics and its energy conserving properties is investigated. The generated numerical method is also tested by simulating the effect of drag reduction due to spanwise wall oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyd J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications, Inc., New York (2000)

    Google Scholar 

  2. Choi K., Graham M.: Drag reduction of turbulent pipe flows by circular-wall oscillation. Phys. Fluids 10(1), 7 (1998)

    Article  Google Scholar 

  3. Duggleby A., Ball K.S., Paul M.R.: The effect of spanwise wall oscillation on turbulent pipe flow structures resulting in drag reduction. Phys. Fluids 19(12), 125107 (2007)

    Article  Google Scholar 

  4. Duggleby A., Ball K.S., Paul M.R., Fischer P.: Dynamical eigenfunction decomposition of turbulent pipe flow. J. Turbulence 8, 772815469 (2007)

    Article  MathSciNet  Google Scholar 

  5. Eckhardt B., Schneider T.M., Hof B., Westerweel J.: Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39(1), 447–468 (2007)

    Article  MathSciNet  Google Scholar 

  6. Eggels J.G.M., Unger F., Weiss M.H., Westerweel J., Adrian R.J., Friedrich R., Nieuwstadt F.T.M.: Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175–210 (1994)

    Article  Google Scholar 

  7. Fukagata K.: Highly energy-conservative finite difference method for the cylindrical coordinate system. J. Comput. Phys. 181(2), 478–498 (2002)

    Article  MATH  Google Scholar 

  8. Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge (2007)

  9. Jung W.J., Mangiavacchi N., Akhavan F.L.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4(8), 1605–1608 (1992)

    Article  Google Scholar 

  10. Kopriva D.A.: Implementing Spectral Methods for Partial Differential Equations. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  11. Leonard A., Wray A.: A New Numerical Method for the Simulation of Three-Dimensional Flow in a Pipe. NASA Technical Memorandum 84267, USA (1982)

    Google Scholar 

  12. Meseguer, A., Trefethen, L.N.: A spectral Petrov-Galerkin formulation for pipe flow I: linear stability and transient growth, Rep. 00/18, Numerical Analysis Group. Oxford University, Computing Lab. (2000)

  13. Meseguer, A., Trefethen, L.N.: A spectral Petrov-Galerkin formulation for pipe flow: II nonlinear transitional stages, Rep. 01/19, Numerical Analysis Group. Oxford University, Computing Lab. (2001)

  14. Meseguer A., Trefethen L.N.: Linearized pipe flow to Reynolds number 107. J. Comput. Phys. 186(1), 178–197 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mhuiris, N.M.G.: The construction and use of divergence free vector expansions for incompressible fluid flow calculations, ICASE Report No. 86-20 (1986)

  16. Moser R., Moin P., Leonard A.: A spectral numerical method for the Navier-Stokes equations with applications to Taylor-Couette flow. J. Comput. Phys. 52(3), 524–544 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nikitin N.V.: On the mechanism of turbulence suppression by spanwise surface oscillations. Fluid Dyn. 2, 185–190 (2000)

    Article  Google Scholar 

  18. Pasquarelli, F.: Domain decomposition for spectral approximation to Stokes equations via divergence free functions. Appl. Numer. Math., pp. 493–514 (1991)

  19. Pasquarelli F., Quarteroni A., Sacchi-Landriani G.: Spectral approximations of the stokes problem by divergence-free functions. J. Sci. Comput. 2(3), 195–226 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Priymak V.G, Miyazaki T.: Accurate Navier-Stokes investigation of transitional and turbulent flows in a circular pipe. J. Comput. Phys. 142(2), 370–411 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Quadrio M., Ricco P.: Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251–271 (2004)

    Article  MATH  Google Scholar 

  22. Quadrio M., Sibilla S.: Numerical simulation of turbulent flow in a pipe oscillating around its axis. J. Fluid Mech. 424, 217–241 (2000)

    Article  MATH  Google Scholar 

  23. Reynolds O.: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. Lond. 174(1883), 935–982 (1883)

    MATH  Google Scholar 

  24. Schneider, T., Eckhardt, B., Vollmer, J.: Statistical analysis of coherent structures in transitional pipe flow. Phys. Rev. E 75(6) (2007)

  25. Trefethen, L.N.: Spectral Methods in Matlab. Society for Industrial and Applied Mathematics, Philadelphia (2000)

  26. Tuğluk O., Tarman H.I.: Solenoidal bases for numerical studies of transition in pipe flow. Phys. Scripta T142, 014009 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Tuğluk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuğluk, O., Tarman, H.I. Direct numerical simulation of pipe flow using a solenoidal spectral method. Acta Mech 223, 923–935 (2012). https://doi.org/10.1007/s00707-011-0602-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0602-z

Keywords

Navigation