Skip to main content
Log in

Analytical solutions for coupled tension-bending of nanobeam-columns considering nonlocal size effects

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Considering nanoscale size effects and based on the nonlocal elastic stress theory, this paper presents an analytical analysis with closed-form solutions for coupled tension and bending of nanobeam-columns subject to transverse loads and an axial force. Unlike previous studies where many nanomechanical models do not yield analytical solutions and hence the size effects are studied by molecular dynamics simulation or other numerical means, the nonlocal nanoscale effects at molecular level unavailable in classical mechanics are investigated analytically here and first-known closed-form analytical solutions are presented. New higher-order differential governing equations in both transverse and axial directions and the corresponding higher-order nonlocal boundary conditions for bending and tension of nanobeam-columns are derived based on the variational principle approach. Closed-form analytical solutions for deformation and tension are presented and their physical significance examined. Examples conclude that the nonlocal stress tends to significantly increase the stiffness of a nanobeam-column, which are contradictory to the current belief using the nonlocal analysis that structural stiffness should be reduced but consistent with many non-nonlocal analyses including the strain gradient and couple stress theories that stiffness should be enhanced. The relationship between bending deflection, axial tension and nanoscale is presented, and also its significance on stiffness enhancement with respect to the design of nanoelectromechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Rafii-Tabar H.: Computational Physics of Carbon Nanotubes. Cambridge University Press, London (2008)

    Google Scholar 

  3. Sánchez-Portal D., Artacho E., Soler J.M., Rubio A., Ordejón P.: Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59, 12678–12688 (1999)

    Article  Google Scholar 

  4. Van Lier G., Van Alsenoy C., Van Doren V., Geerlings P.: Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem. Phys. Lett. 326, 181–185 (2000)

    Article  Google Scholar 

  5. Zhou G., Duan W., Gu B.: First-principles study on morphology and mechanical properties of single-walled carbon nanotube. Chem. Phys. Lett. 333, 344–349 (2001)

    Article  Google Scholar 

  6. Iijima S., Brabec C., Maiti A., Bernholc J.: Structural flexibility of carbon nanotubes. J. Chem. Phys. 104, 2089–2092 (1996)

    Article  Google Scholar 

  7. Yakobson B.I., Campbell M.P., Brabec C.J., Bernholc J.: High strain rate fracture and C-chain unraveling in carbon nanotubes. Comp. Mater. Sci. 8, 341–348 (1997)

    Article  Google Scholar 

  8. He X.Q., Kitipornchai S., Liew K.M.: Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids 53, 303–326 (2005)

    Article  MATH  Google Scholar 

  9. Yakobson B.I., Brabec C.J., Bernholc J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)

    Article  Google Scholar 

  10. Ru C.Q.: Effective bending stiffness of carbon nanotubes. Phys. Rev. B 62, 9973–9976 (2000)

    Article  Google Scholar 

  11. Ru C.Q.: Elastic buckling of single-walled carbon nanotube ropes under high pressure. Phys. Rev. B 62, 10405–10408 (2000)

    Article  Google Scholar 

  12. Eringen A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972)

    Article  MATH  Google Scholar 

  13. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  14. Eringen A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  15. Peddieson J., Buchanan G.R., McNitt R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  16. Sudak L.J.: Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281–7287 (2003)

    Article  Google Scholar 

  17. Wang Q.: Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98, 124301 (2005)

    Article  Google Scholar 

  18. Lu P., Lee H.P., Lu C., Zhang P.Q.: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 99, 73510 (2006)

    Article  Google Scholar 

  19. Wang Q., Varadan V.K.: Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater. Struct. 15, 659–666 (2006)

    Article  Google Scholar 

  20. Lim C.W., Wang C.M.: Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams. J. Appl. Phys. 101, 54312 (2007)

    Article  Google Scholar 

  21. Ece M.C., Aydogdu M.: Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nanotubes. Acta Mech. 190, 185–195 (2007)

    Article  MATH  Google Scholar 

  22. Lu P., Lee H.P., Lu C., Zhang P.Q.: Application of nonlocal beam models for carbon nanotubes. Int. J. Solids Struct. 44, 5289–5300 (2007)

    Article  MATH  Google Scholar 

  23. Wang C.M., Zhang Y.Y., He X.Q.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18, 105401 (2007)

    Article  Google Scholar 

  24. Reddy J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  MATH  Google Scholar 

  25. Reddy J.N., Pang S.D.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103, 23511 (2008)

    Article  Google Scholar 

  26. Heireche H., Tounsi A., Benzair A., Mechab I.: Sound wave propagation in single-walled carbon nanotubes with initial axial stress. J. Appl. Phys. 104, 14301 (2008)

    Article  Google Scholar 

  27. Aydogdu M.: A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys. E 41, 1651–1655 (2009)

    Article  Google Scholar 

  28. Lim C.W.: Equilibrium and static deflection for bending of a nonlocal nanobeam. Adv. Vib. Eng. 8, 277–300 (2009)

    Google Scholar 

  29. Lim C.W.: On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection. Appl. Math. Mech. 31, 37–54 (2010)

    Article  MATH  Google Scholar 

  30. Lim C.W., Niu J.C., Yu Y.M.: Nonlocal stress theory for buckling instability of nanotubes: new predictions on stiffness strengthening effects of nanoscales. J. Comput. Theor. Nanos. 7, 2104–2111 (2010)

    Article  Google Scholar 

  31. Yang Y., Lim C.W.: A variational principle approach for buckling of Carbon Nanotubes based on nonlocal Timoshenko beam models. Nano 6, 363–377 (2011)

    Article  MATH  Google Scholar 

  32. Lim, C.W., Yu, Y.M.: Nonlocal elasticity theory for vibration of carbon nanotubes and an analysis of higher-order non-classical boundary conditions. Mech. Adv. Mater. Struct. (in press)

  33. Li C., Lim C.W., Yu J.L.: Dynamics and stability for transverse vibrations of nonlocal nanobeams with a variable axial load. Smart Mater. Struct. 20, 15023 (2011)

    Article  Google Scholar 

  34. Lim C.W., Yang Y.: New predictions of size-dependent nanoscale based on nonlocal elasticity for wave propagation in carbon nanotubes. J. Comput. Theor. Nanos. 7, 988–995 (2010)

    Article  Google Scholar 

  35. Lim C.W., Yang Y.: Wave propagation in carbon nanotubes: nonlocal elasticity induced stiffness and velocity enhancement effects. J. Mech. Mater. Struct. 5, 459–476 (2010)

    Article  Google Scholar 

  36. Yang Y., Lim C.W.: A new nonlocal cylindrical shell model for axisymmetric wave propagation in carbon nanotubes. Adv. Sci. Lett. 4, 121–131 (2011)

    Article  Google Scholar 

  37. Fung Y.: Foundations of Solid Mechanics. Prentice Hall, New Jersey (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, C.W., Xu, R. Analytical solutions for coupled tension-bending of nanobeam-columns considering nonlocal size effects. Acta Mech 223, 789–809 (2012). https://doi.org/10.1007/s00707-011-0593-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0593-9

Keywords

Navigation