Skip to main content
Log in

Thermoelasticity theory and the decomposed form of thick plates for extensional deformation

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Without employing ad hoc stress assumptions, the decomposed form of thermoelastic plates for an extensional deformation is proposed on the basis of thermoelasticity theory, and the corresponding decomposition theorem is in extenso presented for the first time. It is shown that the stress state of thermoelastic plates with traction free faces can be uniquely decomposed into four parts: the plane-stress (P-S) state, the shear state, the Papkovich-Fadle (P-F) state, and the thermal state. In the proof course of the decomposition theorem, some basic mathematical methods are used only, so the proof is more convenient for being understood. Due to the corresponding relations of the P-S state and the biharmonic equation, of the shear state and the shear equation, and of the P-F state and the transcendental equation, this work practically proves the equivalence between the decomposition theorem and the refined theory of isothermal plates with free faces. More importantly, the thermal state is in agreement with the Solution P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barber J.R.: Elasticity, 2nd edn. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  2. Fadle J.: Die Selbstspannungs-Eigenwertfunktionen der quadratischen Scheibe. Ing. Arch. 11, 125–148 (1941)

    Article  MathSciNet  Google Scholar 

  3. Boley B.A., Weiner J.H.: Theory of Thermal Stresses. Wiley, New York (1960)

    MATH  Google Scholar 

  4. Noda N., Hetnarski R., Tanigawa Y.: Thermal Stresses, 2nd edn. Taylor & Francis, London (2002)

    Google Scholar 

  5. Schiavone P., Tait R.J.: Thermal effects in Mindlin-type plates. Quart. J. Mech. Appl. Math. 46, 27–39 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rivera J.E.M., Shibata Y.: A linear thermoelastic plate equation with Dirichlet boundary condition. Math. Meth. Appl. Sci. 20, 915–932 (1997)

    Article  MATH  Google Scholar 

  7. Mindlin R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. ASME J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  8. Reissner E.: The effect of transverse shear deformation on the bending of elastic plates. ASME J. Appl. Mech. 12, 69–77 (1945)

    MathSciNet  Google Scholar 

  9. von Kromm, A.: Verallgemeinerte Theorie der Plattenstatik. Ingenieur-Archiv Band XXI, 4. Heft, pp. 266–286 (1953)

  10. Hencky H.: Über die Berücksichtigung der Schubverzerrung in ebenen Platten. Ing. Arch. 16, 72–76 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kirchhoff G.R.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math. (Crelle) 40, 51–58 (1850)

    Article  MATH  Google Scholar 

  12. Cheng S.: Elasticity theory of plates and a refined theory. ASME J. Appl. Mech. 46, 644–650 (1979)

    Article  MATH  Google Scholar 

  13. Gregory R.D.: The general form of the three-dimensional elastic field inside an isotropic plate with free faces. J. Elast. 28, 1–28 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang M.Z., Zhao B.S.: The decomposed form of the three-dimensional elastic plate. Acta. Mech. 166, 207–216 (2003)

    Article  MATH  Google Scholar 

  15. Zhao B.S., Wang M.Z.: The equivalence of the refined theory and the decomposed theorem of an elastic plate. Appl. Math. Mech. 26, 486–494 (2005)

    Article  MATH  Google Scholar 

  16. Gao Y., Zhao B.S.: The refined theory of thermoelastic rectangular plates. J. Therm. Stress. 30, 505–520 (2007)

    Article  Google Scholar 

  17. Gao Y., Zhao B.S.: The refined theory of thermoelastic plane problems. J. Therm. Stress. 30, 1233–1248 (2007)

    Article  Google Scholar 

  18. Piltner R.: The derivation of a thick and thin plate formulation without ad hoc assumptions. J. Elast. 29, 133–173 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Piltner R.: The use of complex valued functions for the solution of three-dimensional elasticity problems. J. Elast. 18, 191–225 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao Y., Zhao B.S.: A refined theory of elastic thick plates for extensional deformation. Arch. Appl. Mech. 79, 5–18 (2009)

    Article  MATH  Google Scholar 

  21. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Dover, New York, p. 467 (1944)

  22. Eubanks R.A., Sternberg E.: On the completeness of the Boussinesq-Papkovich stress functions. J. Ration. Mech. Anal 5, 735–746 (1956)

    MathSciNet  MATH  Google Scholar 

  23. Lur’e A.I.: Three-Dimensional Problems of the Theory of Elasticity. Interscience, New York (1964)

    MATH  Google Scholar 

  24. Gregory R.D.: The semi-infinite strip x ≥  0,−1 ≤ y ≤  1; completeness of the Papkovich-Fadle eigenfunctions when \({\phi _{xx}(0, y), \phi _{yy} (0, y)}\) are prescribed. J. Elast. 10, 57–80 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gregory R.D.: The traction boundary value problems for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions. J. Elast. 10, 295–327 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Zhao, BS. & Wang, MZ. Thermoelasticity theory and the decomposed form of thick plates for extensional deformation. Acta Mech 223, 755–764 (2012). https://doi.org/10.1007/s00707-011-0589-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0589-5

Keywords

Navigation