Skip to main content
Log in

Energy transient growth in curved channel flow

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Transient growth of perturbations due to non-normality for the curved channel Poiseuille flow (CCPF) is presented. The study covers a wide range of the radii ratios η as well as axial and azimuthal modes, with the purpose of complementing the results of linear stability for this flow with a study of the optimal linear growth possible in the linearly stable parameter regions. For the wide-gap case, the transient growth of streamwise-azimuthal modes that grow most is of low level and suppressed by curvature. It is also found that as curved channel flow approaches the flow in a straight channel enough, both the normal and non-normal stability characteristics are almost identical to that of plane Poiseuille flow. The modulation of the basic circular Poiseuille flow by the presence of azimuthal streaks resulting from the significant growth of initial perturbations can be clearly visualized. For the transition region between the wide-gap case and the narrow-gap case, the sensitivity of eigenvalues is shown to be closely related to the magnitude of transient growth, which is tuned by curvature in a smooth way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dean W.R.: Fluid motion in a curved channel. Proc. R. Soc. Lond. Ser. A 121, 402 (1928)

    Article  MATH  Google Scholar 

  2. Reid W.H.: On the stability of viscous flow in a curved channel. Proc. R. Soc. Lond. Ser. A 244, 186 (1958)

    Article  MATH  Google Scholar 

  3. Hammerlin G.: Die Stabilität der Strömung in einem gekrümmten Kanal. Arch. Rat. Mech. Anal. 1, 212 (1958)

    Article  MathSciNet  Google Scholar 

  4. Walowit J., Tsao S., DiPrima R.C.: Stability of flow between arbitrarily spaced concentric cylindrical surfaces including the effect of a radial temperature gradient. Trans. ASME 86, 585 (1964)

    MathSciNet  Google Scholar 

  5. Brewster D.B., Grosberg P., Nissan A.H.: The stability of viscous flow between horizontal concentric cylinders. Proc. R. Soc. Lond. Ser. A 251, 76 (1959)

    Article  MATH  Google Scholar 

  6. Gibson R.D., Cook A.E.: The stability of curved channel flow. Q. J. Mech. Appl. Math. 27, 149 (1974)

    Article  MATH  Google Scholar 

  7. Chen F.: Stability of Taylor-Dean flow in an annulus with arbitrary gap spacing. Phys. Rev. E 48, 1036 (1993)

    Article  Google Scholar 

  8. Webber M.: Instability of thread-annular flow with small characteristic length to three-dimensional disturbances. Proc. R. Soc. Lond. Ser. A 464, 673 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Finlay W.H., Keller J.B., Ferziger J.H.: Instability and transition in curved channel flow. J. Fluid Mech. 194, 417 (1988)

    Article  MATH  Google Scholar 

  10. Matsson O.J.E., Alfredsson P.H.: Experiments on instabilities in curved channel flow. Phys. Fluids A 4, 1666 (1992)

    Article  Google Scholar 

  11. Matsson O.J.E., Alfredsson P.H.: Secondary instability and breakdown to turbulence in curved channel flow. Appl. Sci. Res. 51, 9 (1993)

    Article  Google Scholar 

  12. Gustavsson L.: Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241 (1991)

    Article  MATH  Google Scholar 

  13. Butler K.M., Farrell B.F.: Three dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4, 1637 (1992)

    Article  Google Scholar 

  14. Reddy S.C., Henningson D.S.: Energy growth in viscous channel flows. J. Fluid Mech. 252, 209 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schmid P.J., Henningson D.S.: Stability and transition in shear flows. Springer, New York (2001)

    Book  MATH  Google Scholar 

  16. Meseguer A.: Energy transient growth in the Taylor-Couette problem. Phys. Fluids 14, 1655 (2002)

    Article  MathSciNet  Google Scholar 

  17. Hristova H., Roch S.: Transient growth in exactly counter-rotating Couette-Taylor flow. Theor. Comput. Fluid Dyn 16, 43 (2002)

    Article  MATH  Google Scholar 

  18. Heaton C.J.: Optimal linear growth in spiral Poiseuille flow. J. Fluid Mech. 607, 141 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Straughan B.: Explosive instabilities in mechanics. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  20. Dongarra J.J., Straughan B., Walker D.W.: Chebyshev tau—QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22, 399 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Farrell B.F.: Optimal excitations of perturbations in viscous shear flow. Phys. Fluids 31, 2093 (1988)

    Article  Google Scholar 

  22. Trefethen L.N., Trefethen A.E., Reddy S.C., Driscoll T.A.: Hydrodynamic stability without eigenvalues. Science 261, 578 (1993)

    Article  MathSciNet  Google Scholar 

  23. Bottaro A., Corbett P., Luchini P.: The effect of base flow variation on flow stability. J. Fluid Mech. 476, 293 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tao J.J.: Critical instability and friction scaling of fluid flows through pipes with rough inner surfaces. Phys. Rev. Lett. 103, 264502 (2009)

    Article  Google Scholar 

  25. Reddy S.C., Schmid P.J., Henningson D.S.: Pseudospectra of the Orr-Sommerfeld operator. SIAM J. Appl. Math. 53, 15 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schmid P.J., Henningson D.S.: Optimal energy density growth in Hagen-Poiseuille flow. J. Fluid Mech. 277, 197 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schmid P.J., Henningson D.S., Khorrami M.R., Malik M.R.: A study of eigenvalue sensitivity for hydrodynamic stability operators. Theor. Comput. Fluid Dyn. 4, 227 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-jun Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Wang, BF., Guo, ZW. et al. Energy transient growth in curved channel flow. Acta Mech 221, 341–351 (2011). https://doi.org/10.1007/s00707-011-0513-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0513-z

Keywords

Navigation