Skip to main content
Log in

Determination of friction coefficients, brush contact arcs and brush penetrations for gutter brush–road interaction through FEM

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A 3-D, dynamic, non-linear Finite Element Model (FEM) involving contact is used to determine apparent coefficients of friction, μ, for the interaction between the bristles of a flicking brush for street sweeping and concrete. Also, brush contact arcs, as well as suitable brush penetrations as functions of the debris height, are determined for cutting and F128 brushes. Available experimental results are used to determine the coefficients of friction. The bristles are modelled through beam elements, which are subjected to inertia forces. The results suggest that the model is valid and that the coefficient of friction affects the brush vertical force in the flicking brush, but it does not significantly affect its counterpart in the cutting brush. The results also indicate that the coefficient of friction for the flicking brush depends on the sliding velocity, v, and these were fitted to an exponential μv curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peel, G., Michielen, M., Parker, G.A.: Some aspects of road sweeping vehicle automation. IEEE/ASME International Conference Advanced Intelligent Mechatronics, Como, Italy, I-II, 337–342 (2001)

  2. Michielen, M., Parker, G.: Detecting debris using forward looking sensors mounted on road sweeping vehicles. Mechatronics 2000, Atlanta, USA, Paper Number: M2000-094 (2000)

  3. Vanegas Useche, L.V., Abdel Wahab, M.M., Parker, G.A.: Brush dynamics: models and characteristics. In: Proceedings 8th ASME Conference on Engineering Systems Design and Analysis ESDA 2006, Torino, Italy, ESDA2006-95565-1-ESDA2006-95565-101 (2006)

  4. Walker, T.A., Wong, T.H.F.: Effectiveness of street sweeping for stormwater pollution control—technical report. http://www.catchment.crc.org.au/pdfs/technical199908.pdf (1999). Accessed 14 October 2004

  5. Peel G.M., Parker G.A.: Initial investigations into the dynamics of cutting brushes for sweeping. ASME J. Dyn. Syst. Meas. Control 124(4), 675–681 (2002)

    Article  Google Scholar 

  6. Peel, G.: A General Theory for Channel Brush Design for Street Sweeping PhD Thesis. University of Surrey, UK (2002)

  7. Vanegas Useche L.V., Abdel Wahab M.M., Parker G.A.: Dynamics of an unconstrained oscillatory flicking brush for road sweeping. J. Sound Vib. 307(3–5), 778–801 (2007)

    Article  Google Scholar 

  8. Abdel Wahab M.A., Parker G., Wang C.: Modelling rotary sweeping brushes and analyzing brush characteristic using finite element method. Finite Elem. Anal. Des. 43(6–7), 521–532 (2007)

    Article  Google Scholar 

  9. Vanegas Useche L.V., Abdel Wahab M.M., Parker G.A.: Dynamics of a freely-rotating cutting brush subjected to variable speed. Int. J. Mech. Sci. 50(4), 804–816 (2008)

    Article  Google Scholar 

  10. Vanegas Useche V.V., Abdel Wahab, M.M., Parker, G.A.: Qualitative experimental behavior of oscillatory gutter brushes. In: Proceedings of the 9th ASME Conference on Engineering Systems Design and Analysis ESDA 2008, Haifa, Israel, ESDA2008-59427-1-ESDA2008-59427-7 (2008)

  11. Vanegas Useche L.V., Abdel Wahab M.M., Parker G.A.: Effectiveness of gutter brushes in removing street sweeping waste. Waste Manag. 30(2), 174–184 (2010)

    Article  Google Scholar 

  12. Abdel Wahab M.M., Wang C., Vanegas Useche L.V., Parker G.A.: Finite element models for brush-debris interaction in road sweeping. Acta Mech. 215(1–4), 71–84 (2010)

    Article  MATH  Google Scholar 

  13. Wang, C.: Brush Modelling and Control Techniques for Automatic Debris Removal During Road Sweeping PhD Thesis. University of Surrey, UK (2005)

  14. Fitzpatrick, P.R., Paul, F.W.: Robotic finishing using brushes -material removal mechanics. Deburring and Surface Conditioning 87—Conference 1987, MR87-156-1-11 (1987)

  15. Stango R.J., Heinrich S.M., Shia C.Y.: Analysis of constrained filament deformation and stiffness properties of brushes. ASME J. Eng. Ind. 111(3), 238–243 (1989)

    Article  Google Scholar 

  16. Shia, C.Y., Stango, R.J., Heinrich, S.M.: Theoretical analysis of frictional effect on circular brush stiffness properties. Deburring and Surface Conditioning 89—Conference, MR89-143-1-18 (1989)

  17. Heinrich S.M., Stango R.J., Shia C.Y.: Effect of workpart curvature on the stiffness properties of circular filamentary brushes. ASME J. Eng. Ind. 113(3), 276–282 (1991)

    Google Scholar 

  18. Stango R.J., Cariapa V., Prasad A., Liang S.-K.: Measurement and analysis of brushing tool performance characteristics, part 1: stiffness response. ASME J. Eng. Ind. 113(3), 283–289 (1991)

    Google Scholar 

  19. Stango R.J., Shia C.Y.: Analysis of filament deformation for a freely rotating cup brush. ASME J. Eng. Ind. 119, 298–306 (1997)

    Google Scholar 

  20. Holm E.R., Haslbeck E.G., Horinek A.A.: Evaluation of brushes for removal of fouling from fouling-release surfaces, using a hydraulic cleaning device. Biofouling 19(5), 297–305 (2003)

    Article  Google Scholar 

  21. Sala A., Lucchetti A.: Low-cost tool to reduce biofouling in oyster longline culture. Aquac. Eng. 39(1), 53–58 (2008)

    Article  Google Scholar 

  22. Moumen N., Busnaina A.A.: Removal of submicrometre alumina particles from silicon oxide substrates. Surf. Eng. 17(5), 422–424 (2001)

    Article  Google Scholar 

  23. Philipossian A., Mustapha L.: Effect of tool kinematics, brush pressure and cleaning fluid pH on coefficient of friction and tribology of post-CMP PVA brush scrubbing processes. Mat. Res. Soc. Symp. Proc. 767, 209–215 (2003)

    Google Scholar 

  24. Huang Y., Lu X., Pan G., Lee B., Luo J.: Particles detection and analysis of hard disk substrate after cleaning of post chemical mechanical polishing. Appl. Surf. Sci. 255(22), 9100–9104 (2009)

    Article  Google Scholar 

  25. Holopainen R., Salonen E.M.: Modelling the cleaning performance of rotating brush in duct cleaning. Energy Build. 34(8), 845–852 (2002)

    Article  Google Scholar 

  26. Holopainen R., Salonen E.-M.: Rotating brush behaviour in duct cleaning. Energy Build. 36(10), 1049–1062 (2004)

    Article  Google Scholar 

  27. Chew J.W., Lapworth B.L., Millener P.J.: Mathematical modelling of brush seals. Int. J. Heat Fluid Flow 16(6), 493–500 (1995)

    Article  Google Scholar 

  28. Murphy K.D., Lee C.L.: The 1:1 internally resonant response of a cantilever beam attached to a rotating body. J. Sound Vib. 211(2), 179–194 (1998)

    Article  Google Scholar 

  29. Al-Bedoor B.O., Hamdan M.N.: Geometrically non-linear dynamic model of a rotating flexible arm. J. Sound Vib. 240(1), 59–72 (2001)

    Article  Google Scholar 

  30. Al-Bedoor B.O., El-Sinawi A., Hamdan M.N.: Non-linear dynamic model of an inextensible rotating flexible arm supported on a flexible base. J. Sound Vib. 251(5), 767–781 (2002)

    Article  Google Scholar 

  31. Kane T.R., Ryan R.R., Banerjee A.K.: Dynamics of a cantilever beam attached to a moving base. J. Guidance Control Dyn. 10(2), 139–151 (1987)

    Article  Google Scholar 

  32. Yoo H.H., Ryan R.R., Scott R.A.: Dynamics of flexible beams undergoing overall motions. J. Sound Vib. 181(2), 261–278 (1995)

    Article  Google Scholar 

  33. Lazopoulos K.A.: On rigid-elastic bending and buckling deformations of long beams. Acta Mech. 169(1–4), 145–151 (2004)

    Article  MATH  Google Scholar 

  34. Lazopoulos K.A.: Post-buckling problems for long elastic beams. Acta Mech. 164(3–4), 189–198 (2003)

    Article  MATH  Google Scholar 

  35. Wojciech S., Adamiec-Wójcik I.: Nonlinear vibrations of spatial viscoelastic beams. Acta Mech. 98(1–4), 15–25 (1993)

    Article  MATH  Google Scholar 

  36. Wang L.H., Hu Z.D., Zhong Z., Ju J.W.: Dynamic analysis of an axially translating viscoelastic beam with an arbitrarily varying length. Acta Mech. 214(3–4), 225–244 (2010)

    Article  MATH  Google Scholar 

  37. Krawczuk M.: Natural vibration of cracked rotating beams. Acta Mech. 99(1–4), 35–48 (1993)

    Article  Google Scholar 

  38. Adam C., Heuer R., Jeschko A.: Flexural vibrations of elastic composite beams with interlayer slip. Acta Mech. 125(1–4), 17–30 (1997)

    Article  MATH  Google Scholar 

  39. Gao Y., Wang M.Z., Zhao B.S.: The refined theory of rectangular curved beams. Acta Mech. 189(3–4), 141–150 (2007)

    Article  MATH  Google Scholar 

  40. Sapountzakis E.J., Dourakopoulos J.A.: Flexural–torsional postbuckling analysis of beams of arbitrary cross section. Acta Mech. 209(1–2), 67–84 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Chung J., Yoo H.H.: Dynamic analysis of a rotating cantilever beam by using the finite element method. J. Sound Vib. 249(1), 147–164 (2002)

    Article  Google Scholar 

  42. Li S.P., Meng Y.M., Ma F.L., Tan H.H., Chen W.X.: Research in the working mechanism and virtual design for a brush shape cleaning element of a sugarcane harvester. J. Mater. Process. Technol. 129, 418–422 (2002)

    Article  Google Scholar 

  43. Rabinowicz E.: Friction and Wear of Materials. 2nd edn. John Wiley & Sons Inc, USA (1995)

    Google Scholar 

  44. Benson D.J., Hallquist J.O.: A single surface contact algorithm for the post-buckling analysis of shell structures. Comput. Methods Appl. Mech. Eng. 78(2), 141–163 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vanegas Useche, L.V., Abdel Wahab, M.M., Parker, G.A.: Determination of friction coefficients for cutting brush—road surface interaction through FEM. In: Proceedings IEEE SoutheastCon 2010, Charlotte-Concord, USA, pp. 77–80 (2010)

  46. Meriam J.L., Kraige L.G.: Engineering Mechanics, Vol I. Statics. John Wiley and Sons, New York (1993)

    Google Scholar 

  47. Bowden F.P., Tabor D.: The Friction and Lubrication of Solids Part I. Clarendon Press, Oxford (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Vanegas-Useche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanegas-Useche, L.V., Abdel-Wahab, M.M. & Parker, G.A. Determination of friction coefficients, brush contact arcs and brush penetrations for gutter brush–road interaction through FEM. Acta Mech 221, 119–132 (2011). https://doi.org/10.1007/s00707-011-0490-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0490-2

Keywords

Navigation