Acta Mechanica

, Volume 220, Issue 1–4, pp 257–273 | Cite as

Uncertainty analysis of vibrational frequencies of an incompressible liquid in a rectangular tank with and without a baffle using polynomial chaos expansion

  • D. Krishna. Kishor
  • Ranjan Ganguli
  • S. Gopalakrishnan


Polynomial chaos expansion (PCE) with Latin hypercube sampling (LHS) is employed for calculating the vibrational frequencies of an inviscid incompressible fluid partially filled in a rectangular tank with and without a baffle. Vibration frequencies of the coupled system are described through their projections on the PCE which uses orthogonal basis functions. PCE coefficients are evaluated using LHS. Convergence on the coefficient of variation is used to find the orthogonal polynomial basis function order which is employed in PCE. It is observed that the dispersion in the eigenvalues is more in the case of a rectangular tank with a baffle. The accuracy of the PCE method is verified with standard MCS results and is found to be more efficient.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sewell, J.L.: An experimental and theoretical study of the effect of fuel on pitching translation flutter. NACA TN 4166 (1957)Google Scholar
  2. 2.
    Graham E.W., Rodriguez A.M.: The characteristics of fuel motion which affects airplane dynamics. J. Appl. Mech. 19, 381–388 (1952)Google Scholar
  3. 3.
    Abramson, H.N.: The dynamic behavior of liquids in moving containers. NASA SP-106 (1966)Google Scholar
  4. 4.
    Helmut, F.B.: Theory of the fluid oscillations in a circular cylindrical ring tank partially filled with liquid. NASA TN D-557 (1960)Google Scholar
  5. 5.
    Helmut, F.B.: Fluid oscillations in the containers of a space vehicle and their influence upon stability. NASA TR R-187 (1964)Google Scholar
  6. 6.
    Oberkampf, W.L., Diegert, K.V., Alvin, K.F., Rutherford, B.M.: Variability, uncertainty, and error in computational simulation. AIAA/ASME joint thermophysics and heat transfer conference, ASME-HTD, AIAA, Reston, VA. 357, 259–272 (1998)Google Scholar
  7. 7.
    Du X., Chen W.: Methodology for managing the effect of uncertainty in simulation-based design. AIAA J. 38, 1471–1478 (2000)CrossRefGoogle Scholar
  8. 8.
    Du X., Chen W.: Towards a better understanding of modeling feasibility robustness in engineering design. J. Mech. Des. 122, 357–383 (2000)CrossRefGoogle Scholar
  9. 9.
    Zang, T.A., Hemsch, M.J., Hilburger, M.W., Kenny, S.P., Luckring, J.M., Maghami, P., Padula, S.L., Stroud, W.J.: Needs and opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicles, NASA TM-2002–211462, (2002)Google Scholar
  10. 10.
    Hong Z.H.: Reliability analysis method in the presence of fuzziness attached to operating time. Microelectron. Reliab. 35(12), 1483–1487 (1995)CrossRefGoogle Scholar
  11. 11.
    Jia G., Xiaoping D.: Sensitivity analysis with mixture of epistemic and aleatory uncertainties. AIAA J. 45(9), 2337–2349 (2007)CrossRefGoogle Scholar
  12. 12.
    Gayathri P., Umesh K., Ganguli R.: Effect of matrix cracking and material uncertainty on composite plates. Reliab. Eng. Syst. Safety 95(7), 716–728 (2010)CrossRefGoogle Scholar
  13. 13.
    Murugan S., Harursampath D., Ganguli R.: Material uncertainty propagation in helicopter nonlinear aeroelastic response and vibration analysis. AIAA J. 46(9), 2332–2344 (2008)CrossRefGoogle Scholar
  14. 14.
    Murugan S., Ganguli R., Harursampath D.: Aeroelastic analysis of composite Helicopter rotor with random material properties. J. Aircraft 45(1), 306–322 (2008)CrossRefGoogle Scholar
  15. 15.
    Siva C., Murugan S., Ganguli R.: Effect of uncertainty on Helicopter performance prediction. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 224(5), 549–562 (2010)CrossRefGoogle Scholar
  16. 16.
    Choi S., Grandhi R.V., Canfield R.A.: Reliability-based structural design. Springer, London (2006)Google Scholar
  17. 17.
    Dohnal F., Mace B.R., Ferguson N.S.: Joint uncertainty propagation in linear structural dynamics using stochastic reduced basis methods. AIAA J. 47(4), 961–969 (2009)CrossRefGoogle Scholar
  18. 18.
    Kleiber M., Hein T.D.: The stochastic finite element method, basic perturbation technique and computer implementation, pp. 81–145. Wiley, New York (1992)MATHGoogle Scholar
  19. 19.
    Spanos P.D., Ghanem R.G.: Stochastic finite element expansion for random media. J. Eng. Mech. ASCE 115(5), 1035–1053 (1989)CrossRefGoogle Scholar
  20. 20.
    Spanos P.D., Ghanem R.G.: Boundary element formulation for random vibration problems. J. Eng. Mech. ASCE 117(2), 409–423 (1991)CrossRefGoogle Scholar
  21. 21.
    Ghanem R.G., Spanos P.D.: Polynomial chaos in stochastic finite elements. J. Appl. Mech. ASME 57(1), 197–202 (1990)CrossRefMATHGoogle Scholar
  22. 22.
    Ghanem R.G., Kruger R.M.: Numerical solution of spectral stochastic finite element systems. Comput. Methods Appl. Mech. Eng. 129(3), 289–303 (1996)CrossRefMATHGoogle Scholar
  23. 23.
    Ghanem R.G.: Ingredients for a general purpose stochastic finite element implementation. Comput. Methods Appl. Mech. Eng. 108, 19–34 (1999)CrossRefMathSciNetGoogle Scholar
  24. 24.
    William, P.S.: A Monte Carlo dispersion analysis of the X-33 simulation software. AIAA atmospheric flight mechanics conference, August 6–9, Montreal, Canada (2001)Google Scholar
  25. 25.
    Hanson, J.H., Hall, C.E.: Learning about ares I from Monte Carlo simulation. In: AIAA Guidance, Navigation and Control Conference and Exhibit, 18–21, Honolulu, Hawaii (2008)Google Scholar
  26. 26.
    Chen L.C., Zhu W.Q.: Stochastic stability of Duffing oscillator with fractional derivative damping under combined harmonic and white noise parametric excitations. Acta Mech. 207, 109–120 (2009)CrossRefMATHGoogle Scholar
  27. 27.
    Chen L.C., Deng M.L., Zhu W.Q.: First passage failure of quasi integrable-Hamiltonian systems under combined harmonic and white noise excitations. Acta Mech. 206, 133–148 (2009)CrossRefMATHGoogle Scholar
  28. 28.
    Schueller G.I., Pradlwarter H.J.: Uncertainty analysis of complex structural systems. Int. J. Numer. Methods Eng. 80, 881–913 (2009)CrossRefMathSciNetMATHGoogle Scholar
  29. 29.
    Rao S.S., Berke L.: Analysis of uncertain structural systems using interval analysis. AIAA J. 35(4), 727–735 (1997)CrossRefMATHGoogle Scholar
  30. 30.
    Zadeh L.: Fuzzy sets. Inform. Control 8(3), 338–353 (1965)CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    Rao S.S., Sawyer J.P.: Fuzzy finite element approach for the analysis of imprecisely defined systems. AIAA J. 33(12), 2364–2370 (1995)CrossRefMATHGoogle Scholar
  32. 32.
    David M., Dirk V.: Fuzzy finite element method for frequency response function analysis of uncertain structures. AIAA J. 40(1), 126–136 (2002)CrossRefGoogle Scholar
  33. 33.
    Qing L., Rao S.S.: Fuzzy finite element approach for analysis of fiber-reinforced laminated composite beams. AIAA J. 43(3), 651–661 (2005)CrossRefGoogle Scholar
  34. 34.
    Klir G.J., Wierman M.J.: Uncertainty-based information elements of generalized information theory. Physica, Heidelberg (1999)MATHGoogle Scholar
  35. 35.
    Klir G.J.: Generalized information theory: aims, results, and open problems. Reliab. Eng. Syst. Safety 85(13), 21–38 (2004)CrossRefGoogle Scholar
  36. 36.
    Mourelatos Z., Zhou J.: Reliability estimation and design with insufficient data based on possibility theory. AIAA J. 43, 1696–1705 (2005)CrossRefGoogle Scholar
  37. 37.
    Shafer G.: A mathematical theory of evidence. Princeton University Press, Princeton, NJ (1976)MATHGoogle Scholar
  38. 38.
    Oberkampf, W.L., Helton, J.C.: Investigation of evidence theory for engineering applications. In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 4th Non-Deterministic Approaches Forum, AIAA Paper 2002–1569 (2002)Google Scholar
  39. 39.
    Bae H.R., Ramana V.G., Robert A.C.: Uncertainty quantification of structural response using evidence theory. AIAA J. 41(10), 2062–2068 (2003)CrossRefGoogle Scholar
  40. 40.
    Rao S.S., Annamdas K.: Evidence-based fuzzy approach for the safety analysis of uncertain systems. AIAA J. 46(9), 2383–2387 (2008)CrossRefGoogle Scholar
  41. 41.
    Seung K.C., Ramana V.G., Robert A.C., Chris L.P.: Polynomial chaos expansion with latin hypercube samplings for estimation response variability. AIAA J. 42(6), 191–1198 (2004)Google Scholar
  42. 42.
    Wei D.L., Cui Z.S., Chen J.: Uncertainty quantification using polynomial chaos expansion with points of monomial cubature rules. Comput. Struct. 86, 2102–2108 (2008)CrossRefGoogle Scholar
  43. 43.
    Dongbin X., Karniadakis G.M.: Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Eng. 191, 4927–4948 (2002)CrossRefMATHGoogle Scholar
  44. 44.
    Simon F., Guillen P., Sagaut P., Lucor D.: A gPC-based approach to uncertain transonic aerodynamics. Comput. Methods Appl. Mech. Eng. 199, 1091–1099 (2010)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Iannotta, B.: Slosh, rattle and roll. New Scientist; May 27, 32–35 (2000)Google Scholar
  46. 46.
    Gerrits J., Veldman A.E.P.: Dynamics of liquid-filled spacecraft. J. Eng. Math. 45, 21–38 (2003)CrossRefMathSciNetMATHGoogle Scholar
  47. 47.
    Traugott, S.C., Mehta, G.: Response of small amplitude slosh to time-dependent effective gravity. AIAA-1984-1424 SAE, and ASME, Joint Propulsion Conference, 20th, Cincinnati, OH, June 11–13, (1984)Google Scholar
  48. 48.
    Hung R.J., Long Y.T., Chi Y.M.: Slosh dynamics coupled with spacecraft attitude dynamics. I - Formulation and theory. J. Spacecraft Rockets 33(4), 575–581 (1996)CrossRefGoogle Scholar
  49. 49.
    Alireza B., Hari B.V.: Prediction of bulk modulus and volumetric expansion coefficient of water for leak tightness test of pipelines. Int. J. Pressure Vessels Piping 86, 550–554 (2009)CrossRefGoogle Scholar
  50. 50.
    Krishna, K.D., Gopalakrishnan, S., Ganguli, R.: Three dimensional sloshing: A consistent finite element formulation. Int. J. Numer. Methods Fluids 2010. doi:10.1002/fld.2260
  51. 51.
    Wiener N.: The homogeneous chaos. Am. J. Math. 60, 897–939 (1938)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Thierry C., Olivier L.M., Martinez J.M.: Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Safety 94, 1161–1172 (2009)CrossRefGoogle Scholar
  53. 53.
    Cole, H.A., Gambucci, B.J.: Measured two-dimensional damping effectiveness of fuel sloshing baffles applied to ring baffles in cylindrical tanks, NASA TN D-694 (1961)Google Scholar
  54. 54.
    Silveira, M.A., Stephens, D.G., Leonard, H.W.: Damping of liquid oscillations in cylindrical tanks with various baffles, NASA TN D-1709 (1963)Google Scholar
  55. 55.
    Alfredo B., Rodolfo R., Durate S.: Finite element computation of sloshing modes in containers with elastic baffle plates. Int. J. Numer. Methods Eng. 56, 447–467 (2003)CrossRefMATHGoogle Scholar
  56. 56.
    Satish C., Prathap G.: A field consistent formulation for the eight noded solid finite element. Comput. Struct. 33, 345–355 (1989)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • D. Krishna. Kishor
    • 1
  • Ranjan Ganguli
    • 1
  • S. Gopalakrishnan
    • 1
  1. 1.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations