Skip to main content
Log in

Computational and experimental study of high-speed impact of metallic Taylor cylinders

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

High-speed impact of metallic Taylor cylinders is investigated computationally and experimentally. On the computational side, a modular explicit finite element hydrocode based on updated Lagrangian formulation is developed. A non-classical contour integration is employed to calculate the nodal forces in the constant strain axisymmetric triangular elements. Cell and nodal averaging of volumetric strain formulations are implemented on different mesh architectures to reduce the incompressibility constraints and eliminate volumetric locking. On the experimental side, a gas gun is designed and manufactured, and Taylor impact tests of cylinders made of several metallic materials are performed. Computational predictions of the deformed profiles of Taylor cylinders and experimentally determined deformed profiles are compared for verification purposes and to infer conclusions on the effect of yield strength, strain hardening and strain rate on the material response. The article also compares the performance of different plastic flow stress models that are incorporated into the hydrocode with the experimental results and results provided by previously reported simulations and tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor G.I.: The use of flat-ended projectiles for determining dynamic yield stress: I, Theoretical considerations. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 194, 289–300 (1948)

    Article  Google Scholar 

  2. Hawkyard J.B.: A theory for the mushrooming of flat-ended projectiles impinging on a flat rigid anvil using energy considerations. Int. J. Mech. Sci. 11, 313–333 (1968)

    Article  Google Scholar 

  3. Jones, S.E, Gillis, P.P.: Analytical modeling of high rate processes. AFRL-MN-EG-TR-1998-7044 (1998)

  4. Jones, S.E, Gillis, P.P.: Dynamic testing of materials. AFRL-MN-EG-TR-2002-7001 (2002)

  5. Wilkins, M.L.: Calculation of elastic-plastic flow. UCRL-7322, Rev. I, Lawrence Radiation Laboratory, University of California (1963)

  6. Johnson, G.R.: EPIC-2, a computer program for elastic-plastic impact computations in two dimensions plus spin. Technical Report ARBRL-CR-00373, Honeywell Inc. Defence Systems Division (1978)

  7. Hallquist, J.O.: User’s manual for DYNA2D—An explicit two-dimensional hydrodynamic finite element code with interactive rezoning. Lawrence Livermore National Laboratory, UCID-18756, Rev. 2 (1984)

  8. Century Dynamics Inc.: AUTODYN theory manual. http://www.century-dynamics.com. Accessed 06 December 2010

  9. Zukas J.A.: Introduction to Hydrocodes. Elsevier, Oxford, UK (2004)

    MATH  Google Scholar 

  10. Johnson G.R., Holmquist T.J.: Evaluation of cylinder-impact test data for constitutive model constants. J. Appl. Phys. 64, 3901–3910 (1988)

    Article  Google Scholar 

  11. Holt W.H., Mock W. Jr., Zerilli F.J., Clark J.B.: Experimental and computational study of the impact deformation of titanium Taylor cylinder specimens. Mech. Mater. 17, 195–201 (1994)

    Article  Google Scholar 

  12. Celentano D.J.: Thermomechanical analysis of the Taylor impact test. J. Appl. Phys. 91, 3675–3686 (2002)

    Article  Google Scholar 

  13. Belytschko T., Liu W.K., Moran B.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester, UK (2000)

    MATH  Google Scholar 

  14. Konokman, H.E.: Development of lagrangian hydrocode for high speed impact analysis and its experimental verification. MSc Thesis, Middle East Technical University, Turkey (2008)

  15. Wilkins M.L.: Computer Simulation of Dynamic Phenomena. Springer, Berlin (1999)

    MATH  Google Scholar 

  16. Johnson, G.R., Stryk, R.A., Holmquist, T.J., Beissel, S.R.: Numerical algorithms in a lagrangian hydrocode. WL-TR-1997-7039 (1997)

  17. Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and temperatures. In: Proceedings of 7th International Symposium on Ballistics, The Netherlands (1983)

  18. Steinberg D.J., Lund C.M.: A constitutive model for strain rates from 10−4 to 106 s−1. J. Appl. Phys. 65, 1528–1533 (1989)

    Article  Google Scholar 

  19. Zerilli F.J., Armstrong R.W.: Dislocation-mechanics based constitutive relations for material dynamics calculation. J. Appl. Phys. 61, 1816–1825 (1987)

    Article  Google Scholar 

  20. Follansbee P.S., Kocks U.F.: A constitutive description of the deformation of copper based on the use of mechanical threshold stress as an internal state variable. Acta Metal. 36, 81–93 (1988)

    Article  Google Scholar 

  21. Goto D.M., Bingert J.F., Reed W.R., Garrett R.K. Jr.: Anisotropy-corrected MTS constitutive strength modeling in HY-100 steel. Scr. Mater. 42, 1125–1131 (2000)

    Article  Google Scholar 

  22. Varshni Y.P.: Temperature dependence of the elastic constants. Phys. Rev. B 2, 3952–3958 (1970)

    Article  Google Scholar 

  23. Beissel S.R., Johnson G.R.: Large-deformation triangular and tetrahedral element formulations for unstructured meshes. Comput. Methods Appl. Mech. Eng. 187, 469–482 (2000)

    Article  MATH  Google Scholar 

  24. Detournay, C., Dzik, E.: Nodal mixed discretization for tetrahedral elements. In: Proceedings of 4th International FLAC Symposium of Numerical Models and Geomechanics Paper No: 07-02 (2006)

  25. Bonet J., Marriott H., Hassan O.: An averaged nodal deformation gradient linear tetrahedral element for large strain explicit dynamic applications. Commun. Numer. Methods Eng. 17, 551–561 (2001)

    Article  MATH  Google Scholar 

  26. Lee W.H.: Oil well perforator design using 2D Eulerian code. Int. J. Impact Eng. 27, 535–559 (2002)

    Article  Google Scholar 

  27. Nagtegaal J.C., Parks D.M., Rice J.R.: On numerically accurate finite element solutions in the fully plastic range. Comput. Methods Appl. Mech. Eng. 4, 153–177 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  28. Banerjee, B.: An evaluation of plastic flow stress models for the simulation of high temperature and high strain rate deformation of metals. arXiv:cond-mat/0512466v1 1-43 (2005)

  29. Martineau, R.L.: A viscoelastic model of expanding cylindrical shells subjected to internal explosive detonations. Ph.D Thesis, Colorado State University, USA (1998)

  30. Konokman, H.E., Kayran, A., Özyörük, Y.: Lagrangian hydrocode formulation for large deformation problems and methods to prevent volumetric locking of triangular elements. In: Proceedings of 4th Ankara International Aerospace Conference, Ankara, Turkey, Paper No: AIAC-2007-072 (2007)

  31. Levy A.: Solid Particle Erosion and Erosion-Corrosion of Materials. ASM International, Ohio (1995)

    Google Scholar 

  32. Davidson D.L., Lankford J.: Fatigue crack tip plastic strain in high-strength aluminum alloys. Fatigue Fract. Eng. Mat. Struct. 3, 289–303 (2007)

    Article  Google Scholar 

  33. Teng X., Wierzbicki T., Hiermaier S., Rohr I.: Numerical prediction of fracture in the Taylor test. Int. J. Solids Struct. 42, 2929–2948 (2005)

    Article  MATH  Google Scholar 

  34. Frutschy K.J., Clifton R.J.: High-temperature pressure-shear plate impact experiments on OFHC Copper. J. Mech. Phys. Solids. 46, 1723–1743 (1998)

    Article  Google Scholar 

  35. Lee S., Barthelat F., Hutchinson J.W., Espinosa H.D.: Dynamic failure of metallic pyramidal truss core materials—experiments and modeling. Int. J. Plast. 22, 2118–2145 (2006)

    Article  MATH  Google Scholar 

  36. Xue Q., Meyers M.A., Nesterenko V.F.: Self organization of shear bands in stainless steel. Mat. Sci. Eng. A. 384, 35–46 (2004)

    Article  Google Scholar 

  37. Karpp R.R.: Warhead simulation techniques: hydrocodes. In: Carleone, J. (eds) Tactical Missile Warheads, pp. 233–314. AIAA Inc., Washington, DC (1993)

    Google Scholar 

  38. Banerjee, B.: MPM Validation: Sphere-cylinder impact tests: Energy balance. Report No. C SAFE-CD-IR-04-001, University of Utah, Utah, USA (2004)

  39. Chhabildas L.C., Konrad C.H., Mosher D.A., Reinhart W.D., Duggins B.D., Trucano T.G., Summers R.M., Peery J.S.: A methodology to validate 3D arbitrary Lagrangian Eulerian codes with applications to Alegra. Int. J. Impact Eng. 23, 101–112 (1999)

    Article  Google Scholar 

  40. Fish, J., Oskay, C., Fan, R.: AL 6061-T6-Elastomer impact simulations. RPI research reports http://www.scorec.rpi.edu/cgi-bin/reports/Search3.pl?InputID=370 (2005). Accessed 06 December 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Altan Kayran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konokman, H.E., Çoruh, M.M. & Kayran, A. Computational and experimental study of high-speed impact of metallic Taylor cylinders. Acta Mech 220, 61–85 (2011). https://doi.org/10.1007/s00707-011-0467-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0467-1

Keywords

Navigation