Skip to main content
Log in

Analysis of peristaltic two-phase flow with application to ureteral biomechanics

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Fluid flow in the ureter is sometimes accompanied by solid particles that are produced in the kidneys or result from the breakup of larger kidney stones; ureteral peristalsis is affected by the presence of these solids. Peristaltic flow is analyzed for a solitary traveling wave in an axisymmetric tube with an incompressible, Newtonian fluid in which identical, solid spherical particles are distributed. A two-phase flow model is used in conjunction with a perturbation method based on a small radius to length ratio of the wave to obtain a closed-form solution of the flow and particle velocities. The phenomenon of trapping in which closed fluid recirculation streamlines in a moving coordinate frame occurs is discussed. Peristaltic pumping is affected as particle volume fraction is increased. The pressure drop diminishes as the amplitude ratio (wave amplitude/wave radius) decreases. The pressure in the contracted part of the ureter increases as the particle volume fraction is increased. It is suggested that certain pathological and physiological manifestations on the ureter can be related to these findings. The results may also be relevant to the transport of other physiological fluids and industrial applications in which peristaltic pumping is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Particle radius

a b :

Wave amplitude

b :

Characteristic length

c :

Wave velocity

C :

Volume fraction

H :

Equation of wall in fixed frame

M :

Drag force per unit volume

p :

Pressure

P :

Pressure rise over characteristic length

q :

Flow rate in moving frame

q c :

Critical flow rate for bifurcation in moving frame

q λ :

Flow rate characteristic value in moving frame

Q :

Time-averaged flow rate in fixed frame

\({\widehat Q}\) :

Instantaneous flow rate in fixed frame

(r, z):

Spatial coordinates in moving frame

(R, Z):

Spatial coordinates in fixed frame

R b :

Wave radius

Re 0 :

Liquid Reynolds number

\({\overline {Re}}\) :

Modified Reynolds number

S :

Stokes drag coefficient

t :

Time

(u, v):

Axial and radial velocity in moving frame

(U, V):

Axial and radial velocity in fixed frame

α :

ρ p /ρ f , Density ratio between phases

\({\epsilon}\) :

R b /b, Nondimensional wave slope

η :

Equation of wall in moving frame

λ:

Axial length

μ :

Viscosity

μ 0 :

Fluid viscosity

ρ :

Density

τ :

Viscous stress tensor

\({\phi}\) :

a b /R b , Amplitude ratio

ψ :

Stream-function

f :

Fluid phase

p :

Particle phase

r :

Relative

s :

Suspension

* :

Dimensional quantities

References

  1. Shapiro A.H., Jaffrin M.Y., Weinberg S.L.: Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 37, 799–825 (1969)

    Article  Google Scholar 

  2. Yin F., Fung Y.C.: Peristaltic transport. J. Appl. Mech. 35, 669–675 (1969)

    Google Scholar 

  3. Zien T.F., Ostrach S.: A long wave approximation of peristaltic motion. J. Biomech. 3, 63–75 (1970)

    Article  Google Scholar 

  4. Manton M.J.: Long-wavelength peristaltic pumping at low Reynolds number. J. Fluid Mech. 68, 681–693 (1975)

    Article  Google Scholar 

  5. Lykoudis P., Roos R.: The fluid mechanics of the ureter from a lubrication theory point of view. J. Fluid Mech. 43, 661–674 (1970)

    Article  Google Scholar 

  6. Griffiths D.J.: Flow of urine through the ureter: a collapsible, muscular tube undergoing peristalsis. J. Biomech. Eng. 111, 206–211 (1989)

    Article  Google Scholar 

  7. Takabatake S., Ayukawa K., Mori A.: Peristaltic flow in circular cylindrical tubes under finite wavelengths and finite Re. J. Fluid Mech. 193, 267–283 (1988)

    Article  Google Scholar 

  8. Xiao Q., Damodaran M.: A numerical investigation of peristaltic waves in circular tubes. Int. J. Comput. Fluid Dyn. 16(3), 201–216 (2002)

    Article  MATH  Google Scholar 

  9. Yin F., Fung Y.: Comparison of theory and experiment in peristaltic transport. J. Fluid Mech. 47, 93–112 (1971)

    Article  Google Scholar 

  10. Ramachandra Rao A., Mishra M.: Nonlinear and curvature effects on peristaltic flow of a viscous fluid in an asymmetric channel. Acta Mech. 168, 35–59 (2001)

    Article  Google Scholar 

  11. Srinivasacharya W., Mishra M., Rao A.R.: Peristaltic pumping of a micropolar fluid in a tube. Acta Mech. 161, 165–178 (2003)

    MATH  Google Scholar 

  12. Hayat T., Ali N., Ashgar A.: An analysis of peristaltic transport for flow of a Jeffrey fluid. Acta Mech. 193, 101–112 (1998)

    Article  Google Scholar 

  13. Pozrikidis C.: A study of peristaltic flow. J. Fluid Mech. 180, 515–527 (1987)

    Article  Google Scholar 

  14. Graw M., Engelhardt H.: Simulation of physiological ureteral peristalsis. Urol. Int. 41, 1–8 (1986)

    Article  Google Scholar 

  15. Misra J.C.: Biomathematics: Modelling and Simulation. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  16. Misra J.C., Pandey K.: A mathematical model for oesophageal swallowing of a food-bolus. Math. Comput. Model. 33, 997–1009 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Widmaier E.P., Raff H., Strang K.T.: Vander’s Human Physiology: The Mechanisms of Body Function. McGraw-Hill, New York (2001)

    Google Scholar 

  18. Mernone A.V., Mazumdar J.N., Lucas S.K.: A mathematical study of peristaltic transport of a Casson fluid. Math. Comput. Model. 35, 895–912 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Misra J., Pandey K.: Peristaltic transport of blood in small vessels: study of a mathematical model. Comput. Math. Appl. 43, 1183–1193 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gupta B.B., Seshadri V.: Peristaltic transport in non-uniform tubes. J. Biomech. 9, 105–109 (1976)

    Article  MATH  Google Scholar 

  21. Fauci L.J., Dillon R.: Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38, 371–394 (2006)

    Article  MathSciNet  Google Scholar 

  22. Eytan O., Elad D.: Analysis of intra-uterine fluid motion induced by uterine contractions. Bull. Math. Biol. 61, 221–238 (1999)

    Article  Google Scholar 

  23. Ishii M., Hibiki T.: Thermo-Fluid Dynamics of Two-Phase Flow. Springer, Berlin (2006)

    MATH  Google Scholar 

  24. Drew D.: Stability of a Stokes layer of a dusty gas. Phys. Fluids 22(11), 2081–2086 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Drew D.: Mathematical modeling of two-phase flow. Annu. Rev. Fluid Mech. 15, 261–291 (1983)

    Article  Google Scholar 

  26. Drew D.A., Passman S.L.: Theory of Multicomponent Fluids. Springer, Berlin (1999)

    Google Scholar 

  27. Kleinstreuer C.: Two-Phase Flow: Theory and Applications. Taylor and Francis, London (2003)

    MATH  Google Scholar 

  28. Enwald H., Peirano E., Almstedt A.E.: Eulerian two-phase flow theory applied to fluidization. Int. J. Multiph. Flow 22, 21–66 (1996)

    Article  MATH  Google Scholar 

  29. Patankar N.A., Joseph D.D.: Modeling and numerical simulation of particulate flows by the Eulerian–Lagrangian approach. Int. J. Multiph. Flow 27, 1659–1684 (2001)

    Article  MATH  Google Scholar 

  30. Jiménez-Lozano J., Sen M., Dunn P.F.: Particle motion in unsteady two-dimensional peristaltic flow with application to the ureter. Phys. Rev. E 79(4), 041901 (2009)

    Article  Google Scholar 

  31. Jiménez-Lozano J., Sen M.: Particle dispersion in two-dimensional peristaltic flow. Phys. Fluids 22, 043303 (2010)

    Article  Google Scholar 

  32. Stewart H.B.: Two-phase flow: models and methods. J. Comput. Phys. 56, 363–409 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Srivastava L.M., Srivastava V.P.: Peristaltic transport of a particle-fluid suspension. J. Biomech. Eng. 111, 157–165 (1989)

    Article  Google Scholar 

  34. Mekheimer K.S., El Shehawey E.F., Elaw A.M.: Peristaltic motion of a particle-fluid suspension in a planar channel. Int. J. Theor. Phys. 37(11), 2895–2920 (1998)

    Article  MATH  Google Scholar 

  35. Misra J., Pandey K.: Peristaltic transport of particle-fluid suspension in a cylindrical tube. Comput. Math. Appl. 28(4), 131–145 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sha W.T., Soo S.L.: On the effect of \({P\nabla\alpha}\) term in multiphase dynamics. Int. J. Multiph. Flow 5, 153–158 (1979)

    Article  Google Scholar 

  37. Felderhof B.U.: Virtual mass and drag in two-phase flow. J. Fluid Mech. 225, 177–196 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Drew D.A.: Two-phase flows: constitutive equations for lift and Brownian motion and some basic flows. Arch. Ration. Mech. Anal. 62(2), 149–163 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  39. Charm S., Kurland G.: Blood Flow and Microcirculation. Wiley, New York (1974)

    Google Scholar 

  40. Siddiqui A.M., Schwarz W.H.: Peristaltic flow of a second-order fluid in tubes. J. Non-Newton. Fluid Mech. 53, 257–284 (1994)

    Article  Google Scholar 

  41. Boyarski S., Gottschalk C., Tanagho E., Zimskind P.: Urodynamics: Hydrodynamics of the Ureter and Renal Pelvis. Academic Press, San Diego (1971)

    Google Scholar 

  42. Guerra A., Allegri F., Meschi T., Adorni G., Prati B., Nouvenne A., Novarini A., Maggiore U., Fiaccadori E., Borghi L.: Effects of urine dilution on quantity, size and aggregation of calcium oxalate crystals induced in vitro by an oxalate load. Clin. Chem. Lab. Med. 43(6), 585–589 (2005)

    Article  Google Scholar 

  43. Jiménez-Lozano J., Sen M.: Streamline topologies of two-dimensional peristaltic flow and their bifurcations. Chem. Eng. Process. Process Identif. 49(7), 704–715 (2010)

    Article  Google Scholar 

  44. Shigeta M., Kasaoka Y., Yasumoto H., Inoue K., Usui T., Hayashi M., Tazuma S.: Fate of residual fragments after successful extracorporeal shock wave lithotripsy. Int. J. Urol. 6, 169–172 (1999)

    Article  Google Scholar 

  45. Kiil F.: The Function of the Ureter and Renal Pelvis. W.B. Saunders, Philadelphia (1957)

    Google Scholar 

  46. Boyarski S., Labay P.: Ureteral Dynamics. The Williams and Wilkins Co., Baltimore (1972)

    Google Scholar 

  47. Weinberg S.L.: Ureteral function: II. The ureteral catheter and the uremetrogram. Investig. Urol. 12(4), 255–261 (1975)

    Google Scholar 

  48. Shafik A.: Electroureterogram: human study of the electromechanical activity of the ureter. Urology 48(5), 696–699 (1996)

    Article  Google Scholar 

  49. Shafik A.: Ureteric profilometry: a study of the ureteric pressure profile in the normal and pathologic ureter. Scand. J. Urol. Nephrol. 32, 14–19 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihir Sen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez-Lozano, J., Sen, M. & Corona, E. Analysis of peristaltic two-phase flow with application to ureteral biomechanics. Acta Mech 219, 91–109 (2011). https://doi.org/10.1007/s00707-010-0438-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0438-y

Keywords

Navigation