Skip to main content
Log in

Clamped-free double-walled carbon nanotube-based mass sensor

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, we investigate the vibrations of the cantilever double-walled carbon nanotube (DWCNT) with attached bacterium on the tip in the view of developing the sensor. This sensor will be able to help to identify the bacterium or virus that may be attached to the DWCNT. Four cases are considered; these are light or heavy bacteria attached to either inner or outer nanotube. The problem is solved by the finite difference method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S.: Helical microtubes of graphite carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Kiani, K.: Application of nonlocal beam models to double-walled carbon nanotubes under a moving nanoparticle. Part I: theoretical formulations. Acta Mech. (2010). doi:10.1007/s00707-010-0362-1

  3. Ece M.C., Aydogdu M.: Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta Mech. 190, 185–195 (2007)

    Article  MATH  Google Scholar 

  4. Wu D.H., Chien W.T., Chen C.S., Chen H.H.: Resonant frequency analysis of fixed-free single-walled carbon nanotube-based mass sensor. Sens. Actuat. 126, 117–121 (2006)

    Article  Google Scholar 

  5. Gupta A., Akin D., Bashir R.: Single virus particle mass detection using microresonators with nanoscale thickness. Appl. Phys. Lett. 84, 1976–1978 (2004)

    Article  Google Scholar 

  6. Mateiu R., Davis Zachary J., Madsen Dorte N., Molhave K., Boggild P., Rassmusen A.M., Brorson M., Jacobsen and Claus J.H., Boisen A.: An approach to a multi-walled carbon nanotube based mass sensor. Microelectron. Eng. 73, 670–674 (2004)

    Article  Google Scholar 

  7. Mateiu R., Kuhle A., Marie R., Boisen A.: Building a multi-walled carbon nanotube-based mass sensor with the atomic force microscope. Ultramicroscopy 105, 233–237 (2005)

    Article  Google Scholar 

  8. Braun T., Ghatkesar M.K., Backmann N., Grange W., Boulanger P., Letellier L., Lang H.-P., Bietsch A., Gerber C., Hegner C.: Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors. Nat. Nanotechonol. 4, 179–185 (2009)

    Article  Google Scholar 

  9. Elishakoff I., Pentaras D.: Some modern problems in structural engineering dynamics. Shock Vibr. 37, 331–348 (2010)

    Google Scholar 

  10. Fraenkel-Conrat H.: The Viruses, Catalogue, Characterization, and Classification. Plenum Press, New York, London (1985)

    Google Scholar 

  11. Gunsalus I.C., Stanier R.I.: The bacteria, a treatise on structure and function. Academic Press, New York, London (1960)

    Google Scholar 

  12. Laura P.A.A., Pombo J., Susemihl E.A.: A note on the vibration of a clamped-free beam with a mass at the free end. J. Sound Vibr. 37, 161–168 (1974)

    Article  Google Scholar 

  13. Laura P.A.A.: Comments on Vibration of a cantilever beam with a base excitation and tip mass. J. Sound Vibr. 88, 569 (1983)

    Article  Google Scholar 

  14. To C.W.S.: Vibration of a cantilever beam with a base excitation and tip mass. J. Sound Vibr. 83, 445–460 (1982)

    Article  Google Scholar 

  15. To C.W.S.: Author’s reply. J. Sound Vibr. 88, 570–571 (1983)

    Article  Google Scholar 

  16. Soedel W.: On the philosophy of absolute truth in structural vibrations. J. Sound Vibr. 93, 465–468 (1984)

    Article  Google Scholar 

  17. Maltbaek J.C.: The influence of a concentrated mass on the free vibrations of a uniform beam. Int. J. Mech. Sci. 3, 219–228 (1960)

    Google Scholar 

  18. Jacquot R.G.: Further comments on vibration of a cantilever beam with a base excitation and tip mass. J. Sound Vibr. 93, 312–313 (1984)

    Article  Google Scholar 

  19. Gottlieb H.P.W.: Equivalence of a mode formula of Laura et al. and To. J. Sound Vibr. 95, 557–558 (1984)

    Article  MathSciNet  Google Scholar 

  20. Pearlstein A.J.: On the equivalence of two sets of mode shapes in a cantilever beam problem. J. Sound Vibr. 95, 559–560 (1984)

    Article  Google Scholar 

  21. Salvadori M.G.: Numerical computation of buckling loads by finite difference. ASCE 116, 590–624 (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Versaci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elishakoff, I., Versaci, C. & Muscolino, G. Clamped-free double-walled carbon nanotube-based mass sensor. Acta Mech 219, 29–43 (2011). https://doi.org/10.1007/s00707-010-0435-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0435-1

Keywords

Navigation