Skip to main content
Log in

Analytical approximate periodic solutions for two-degree-of-freedom coupled van der Pol-Duffing oscillators by extended homotopy analysis method

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, the extended homotopy analysis method (EHAM) is applied to derive the accurate approximate analytical solutions for multi-degree-of-freedom (MDOF) coupled oscillators. The present paper not only introduces the rationale for the EHAM for MDOF oscillators, but also strengthens the availability of the conventional homotopy analysis method (HAM) in solving complex MDOF dynamical systems. Employing the EHAM for the two-degree-of-freedom (TDOF) coupled van der Pol-Duffing oscillator, the explicit analytical solutions of frequency ω and displacements x 1(t) and x 2(t) are formulated for various initial conditions and physical parameters. To verify the accuracy and correctness of this approach, a number of comparisons are conducted between the results of the EHAM and the numerical integration (i.e. Runge-Kutta) method. It is shown that the third-order analytical solutions of the EHAM agree well with the numerical integration solutions, even if the time variable t progresses to a comparatively large domain in the time history responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liao, S.J.: The proposed homotopy analysis techniques for the solution of nonlinear problems. PhD dissertation, Shanghai Jiao Tong University, Shanghai (1992)

  2. Liao S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. CRC Press, Boca Raton, Chapman and Hall, CRC Press (2003)

    Book  Google Scholar 

  3. Liao S.J., Chwang A.T.: Application of homotopy analysis method in nonlinear oscillation. ASME J. Appl. Mech. 65, 914–922 (1998)

    Article  MathSciNet  Google Scholar 

  4. Liao S.J.: An analytic approximate approach for free oscillations of self-excited systems. Int. J. Non Linear Mech. 39, 271–280 (2004)

    Article  MATH  Google Scholar 

  5. Liao S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xu H.: An explicit analytic solution for free convection about a vertical flat plate embedded in a porous medium by means of homotopy analysis method. Appl. Math. Comput. 158, 433–443 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Inc M.: On the exact solution of Laplace equation with Dirichlet and Neumann boundary conditions by the homotopy analysis method. Phys. Lett. A 365, 412–415 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Allan F.M.: Derivation of the Adomian decomposition method using the homotopy analysis method. Appl. Math. Comput. 190, 6–14 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Allan F.M., Syam M.I.: On the analytic solution of the nonhomogeneous Blasius problem. J. Comput. Appl. Math. 182, 362–371 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hayat T., Sajid M.: On analytic solution for thin flow of a fourth grade fluid down a vertical cylinder. Phys. Lett. A 361, 316–322 (2007)

    Article  MATH  Google Scholar 

  11. Hayat T. et al.: On the MHD flow of a second grade fluid in a porous channel. Comput. Math. Appl. 54, 407–414 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hayat T., Shahzad F., Ayub M.: Analytical solution for the steady flow of the third grade fluid in a porous half space. Appl. Math. Model. 31, 2424–2432 (2007)

    Article  MATH  Google Scholar 

  13. Abbasbandy S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A 360, 109–113 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Abbasbandy S.: The application of homotopy analysis method to solve a generalized Hirot-Satsuma coupled KdV equation. Phys. Lett. A 361, 478–483 (2007)

    Article  MATH  Google Scholar 

  15. Abbasbandy S.: Solitary wave solutions to the Kuramoto-Sivashinsky equation by means of the homotopy analysis method. Nonlinear Dyn. 52, 35–40 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fakhari A., Domairry G., Ebrahimpour.: Approximate explicit solutions of nonlinear BBMB equations by homotopy analysis method and comparison with the exact solution. Phys. Lett. A. 368, 64–68 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yabushita K., Yabushita M., Tsuboi K.: An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method. J. Phys. A Math. Theory 40, 8403–8416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liao S.J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2003–2016 (2010)

    Article  MathSciNet  Google Scholar 

  19. Niu Z., Wang C.: A one-step optimal homotopy analysis method for nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2026–2036 (2010)

    Article  MathSciNet  Google Scholar 

  20. Pirbodaghi, T., Hoseini, S.: Nonlinear free vibration of a symmetrically conservative two-mass system with cubic nonlinearity. J. Comput. Nonlinear Dyn. 5 (2010) Article No. 011006 (1–6)

  21. Zhang, W., Qian, Y.H., Yao, M.H., Lai, S.K.: Periodic solutions of multi-degree-of-freedom strongly nonlinear coupled van der Pol oscillators by homotopy analysis method. Acta Mech. (2010). doi:10.1007/s00707-010-0405-7

  22. Guillermo L.L., Judit M.C.: Fourier-Padé approximants for Nikishin systems. Constructive Approximation 30, 53–69 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Roy D.: Global approximation for some functions. Comput. Phys. Commun. 180, 1315–1337 (2009)

    Article  MATH  Google Scholar 

  24. Le K.Q.: Complex Padé approximant operators for wide-angle beam propagation. Opt. Commun. 282, 1252–1254 (2009)

    Article  Google Scholar 

  25. He J.H.: Asymptotology by homotopy perturbation method. Appl. Math. Comput. 156, 591–596 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. He J.H.: Homotopy perturbation method for bifurcation of nonlinear problems. Int. J. Nonlinear Sci. Numer. Simul. 6, 207–208 (2005)

    Google Scholar 

  27. He J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phy. B 20, 1141–1199 (2006)

    Article  MATH  Google Scholar 

  28. Sajid M., Hayat T., Asghar S.: Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt. Nonlinear Dyn. 50, 27–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Odibat Z., Momani S.: Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Chaos Solitons Fractals 36, 167–174 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Abbasbandy S., Tan Y., Liao S.J.: Newton-homotopy analysis method for nonlinear equations. Appl. Math. Comput. 188, 1794–1800 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen Y.M., Liu J.K.: Improving convergence of incremental harmonic balance method using homotopy analysis method. Acta Mech. Sin. 25, 707–712 (2009)

    Article  MathSciNet  Google Scholar 

  32. Marinca V., Herisanu N.: Determination of periodic solutions for the motion of a particle on a rotating parabola by means of the optimal homotopy asymptotic method. J. Sound Vib. 329, 1450–1459 (2010)

    Article  Google Scholar 

  33. Chen Y.M., Liu J.K.: Homotopy analysis method for limit cycle flitter of airfoils. Appl. Math. Comput. 203, 854–863 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pirbodaghi T., Ahmadian M.T., Fesanghary M.: On the homotopy analysis method for nonlinear vibration of beams. Mech. Res. Commun. 36, 143–148 (2009)

    Article  Google Scholar 

  35. Hoseini S.H., Pirbodaghi T., Asghari M., Farrahi G.H., Ahmadian M.T.: Nonlinear free vibration of conservative oscillators with inertia and static type cubic nonlinearities using homotopy analysis method. J. Sound Vib. 316, 263–273 (2008)

    Article  Google Scholar 

  36. Liao S.J.: Notes on the homotopy analysis method: some definitions and theorems. Commun. Nonlinear Sci. Numer. Simul. 14, 983–997 (2009)

    Article  MathSciNet  Google Scholar 

  37. Kuznetsov A.P., Stankevich N.V., Turukina L.V.: Coupled van der Pol-Duffing oscillators: phase dynamics and structure of synchronization tongues. Physica D 238, 1203–1215 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, Y.J., Nohara, B.T., Liao, S.J.: Series solutions of coupled van der Pol equation by means of homotopy analysis method. J. Math. Phys. 51 (2010) Article No. 063517 (1–12)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, Y.H., Zhang, W., Lin, B.W. et al. Analytical approximate periodic solutions for two-degree-of-freedom coupled van der Pol-Duffing oscillators by extended homotopy analysis method. Acta Mech 219, 1–14 (2011). https://doi.org/10.1007/s00707-010-0433-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0433-3

Keywords

Navigation