Skip to main content

Advertisement

Log in

Finite element simulation of bone remodelling in the human mandible surrounding dental implant

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Dental implant is a biocompatible titanium device surgically placed into the jaw bone to support a prosthetic tooth crown in order to replace missing teeth. However, placement of an implant changes the normal mechanical environment of jawbone, which causes the bone density to redistribute and adapt to the new environment by remodelling. This study aims to predict the density distribution in human jawbone surrounding a dental implant. Based on some popular yet distinctive theories for bone remodelling, a new algorithm is proposed that takes into account both the ‘lazy zone’ effect and the self-organizational control process. The proposed algorithm is first verified by a two-dimensional (2D) plate model simulating bone tissue, then, a 2D finite element model of implant and jawbone is studied. The effects of two parameters, viz the reference value of strain energy density (SED) and the ‘lazy zone’ region, on density distribution are also investigated. The proposed algorithm is proven to be effective, and the predicted density distribution patterns correlate well with clinical observations. This study has demonstrated that consideration of the lazy zone is less important than consideration of the stress and strain (quantified as SED) induced within the bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouchard P., Renouard F., Bourgeois D., Fromentin O., Jeanneret M.H., Beresniak A.: Cost-effectiveness modeling of dental implant versus bridge. Clin. Oral Implants Res. 20, 583–587 (2009)

    Google Scholar 

  2. Turkyilmaz I., McGlumphy E.A.: Influence of bone density on implant stability parameters and implant success: A retrospective clinical study. BMC Oral Health. 8, 32 (2008)

    Article  Google Scholar 

  3. Brånemark P.I., Hansson B.O., Adell R., Breine U., Lindström J., Hallén O., Ohman A.: Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand. J. Plast. Reconst. Surg. Suppl. 7, 1–132 (1977)

    Google Scholar 

  4. Schroeder A., van der Zypen E., Stich H., Sutter F.: The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces. J. Maxillofac. Surg. 9, 15–25 (1981)

    Article  Google Scholar 

  5. Wolff, J.L.: The Law of Bone Remodelling (Translated by Maquet P, Furlong R, in 1986). Springer-Verlag, Berlin (1892)

  6. Carter D.R.: Mechanical loading histories and cortical bone remodeling. Calcif. Tissue Int. 36, 19–24 (1982)

    Article  Google Scholar 

  7. Huiskes R., Weinans H., Grootenboer H.J., Dalstra M., Fudala B., Slooff T.J.: Adaptive bone-remodeling theory applied to prosthetic design analysis. J. Biomech. 20, 1135–1150 (1987)

    Article  Google Scholar 

  8. Weinans H., Huiskes R., Grootenboer H.J.: The behavior of adaptive bone-remodeling simulation models. J. Biomech. 25, 1425–1441 (1992)

    Article  Google Scholar 

  9. Turner C.H., Anne V., Pidaparti R.M.V.: A uniform strain criterion for trabecular bone adaptation, do continuum-level strain gradients drive adaptation. J. Biomech. 30, 555–563 (1997)

    Article  Google Scholar 

  10. Mullender M.G., Huiskes R., Weinans H.: A physiological approach to simulation of bone remodelling as a self- organizational control process. J. Biomech. 27, 1389–1394 (1994)

    Article  Google Scholar 

  11. Mullender M.G, Huiskes R.: Proposal for the regulatory mechanism of Wolff’s law. J. Orthop. Res. 13, 503–512 (1995)

    Article  Google Scholar 

  12. Brekelmans W.A.M., Poort H.W., Slooff T.J.J.H.: A new method to analyse the mechanical behavior of skeletal parts. Acta Orthop. Scand. 43, 301–317 (1972)

    Article  Google Scholar 

  13. Rybicki E.F., Simonen F.A., Weis E.B.: On the mathematical analysis of stress in human femur. J. Biomech. 5, 203–215 (1972)

    Article  Google Scholar 

  14. Carter D.R., Orr T.E., Fyhrie D.P.: Relationships between loading history and femoral cancellous bone architecture. J. Biomech. 22, 231–244 (1989)

    Article  Google Scholar 

  15. Huiskes R., Weinans H., van Rietbergen B.: The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin. Orthop. Relat. Res. 274, 124–134 (1992)

    Google Scholar 

  16. Kerner J., Huiskes R., van Lenthe G.H., Weinans H., van Rietbergen B., Engh C.A., Amis A.A.: Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodelling. J. Biomech. 32, 695–703 (1999)

    Article  Google Scholar 

  17. van Rietbergen B., Huiskes R., Weinans H., Sumner D.R., Turner T.M., Galante J.O.: ESB Research Award 1992. The mechanism of bone remodelling and resorption around press-fitted THA stems. J. Biomech. 26, 369–382 (1993)

    Article  Google Scholar 

  18. Weinans H., Huiskes R., van Rietbergen B., Sumner D.R., Turner T.M., Galante J.O.: Adaptive bone remodelling around bonded noncemented total hip arthroplasty, a comparison between animal experiments and computer simulation. J. Orthop. Res. 11, 500–513 (1993)

    Article  Google Scholar 

  19. Duyck J., Ronold H.J., Van Oosterwyck H., Naert I., Sloten J.V., Ellingsen J.E.: The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: An animal experimental study. Clin. Oral Implants Res. 12, 207–218 (2001)

    Article  Google Scholar 

  20. Mellal A., Wiskott H.W.A., Scherrer S.S., Belser U.C.: Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data. Clin. Oral Implants Res. 15, 239–248 (2004)

    Article  Google Scholar 

  21. Li J., Li H., Shi L., Fok A.S.L., Ucer C., Devlin H., Houner H., Silikas N.: A mathematical model for simulating the bone remodelling process under mechanical stimulus. Dent. Mater. 23, 1073–1078 (2007)

    Article  Google Scholar 

  22. Carter D.R., Fyhrie D.P., Whalen R.T.: Trabecular bone density and loading history: Regulation of connective tissue biology by mechanical energy. J. Biomech. 20, 785–794 (1987)

    Article  Google Scholar 

  23. Hart R.T., Davy D.T.: Theories of bone modelling and remodelling. In: Cowin, S.C. (eds) Bone Mechanics, 1st edn, CRC Press, Boca Raton (1989)

    Google Scholar 

  24. Fyhrie D.P., Carter D.R.: Femoral head apparent density distribution predicted from bone stresses. J. Biomech. 23, 1–10 (1990)

    Article  Google Scholar 

  25. Jacobs C.R., Simo J.C., Bearpre G.S., Carter D.R.: Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. J. Biomech. 30, 603–613 (1997)

    Article  Google Scholar 

  26. Ruimerman R., Huiskes R.: Development of a unifying theory for mechanical adaptation and maintenance of trabecular bone. Theor. Issues in Ergon. Sci. 6, 225–238 (2005)

    Article  Google Scholar 

  27. Rubin C.T., Lanyon L.E.: Regulation of bone mass by mechanical strain magnitude. Calcif. Tissue Int. 37, 411–417 (1985)

    Article  Google Scholar 

  28. Carter D.R., Hayes W.C.: The compressive behavior of bone as a two-phase porous structure. J. Bone Joint Surg. [Am] 59, 954–962 (1977)

    Google Scholar 

  29. Currey J.D.: The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J. Biomech. 21, 131–139 (1988)

    Article  Google Scholar 

  30. Morgan E.F., Bayraktar H.H., Keaveny T.M.: Trabecular bone modulus-density relationships depend on anatomic site. J. Biomech. 36, 897–904 (2003)

    Article  Google Scholar 

  31. Rice J.C., Cowin S.C., Bowman J.A.: On the dependence of the elasticity and strength of cancellous bone on apparent density. J. Biomech. 21, 155–168 (1988)

    Article  Google Scholar 

  32. Guan H., van Staden R., Loo Y.C., Johnson N.W., Ivanovski S., Meredith N.: Influence of bone and dental implant parameters on stress distribution in mandible—A finite element study. Int. J. Oral Maxillofac. Implants 24, 866–876 (2009)

    Google Scholar 

  33. Chou H.Y., Jagodnik J.J., Muftu S.: Predictions of bone remodeling around dental implant systems. J. Biomech. 41, 1365–1373 (2008)

    Article  Google Scholar 

  34. van Staden R.C., Guan H., Loo Y.C.: Application of the finite element method in dental implant research. Comput. Methods Biomech. Biomed. Engin. 9, 257–270 (2006)

    Article  Google Scholar 

  35. Papavasiliou G., Kamposiora P., Bayne S.C., Felton D.A.: 3D-FEA of osseointegration percentages and patterns on implant-bone interfacial stresses. J. Dent. 25, 485–491 (1997)

    Article  Google Scholar 

  36. Watzak G., Zechner W., Ulm C., Tangl S., Tepper G., Watzek G.: Histologic and histomorphometric analysis of three types of dental implants following 18 months of occlusal loading: A preliminary study in baboons. Clin. Oral Implants Res. 16, 408–416 (2005)

    Article  Google Scholar 

  37. Lin D., Li Q., Li W., Duckmanton N., Swain M.: Mandibular bone remodelling induced by dental implant. J. Biomech. 43, 287–293 (2010)

    Article  Google Scholar 

  38. Roberts W.E.: Bone tissue interface. J. Dent. Educ. 52, 804–809 (1988)

    Google Scholar 

  39. Block M.S., Finger I.M., Fontenot M.G., Kent J.N.: Loaded hydroxylapatite-coated and grit-blasted titanium implants in dogs. Int. J. Oral Maxillofac. Implants 4, 219–225 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Lian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lian, Z., Guan, H., Ivanovski, S. et al. Finite element simulation of bone remodelling in the human mandible surrounding dental implant. Acta Mech 217, 335–345 (2011). https://doi.org/10.1007/s00707-010-0409-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0409-3

Keywords

Navigation