Skip to main content
Log in

Periodic solutions of multi-degree-of-freedom strongly nonlinear coupled van der Pol oscillators by homotopy analysis method

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The mathematical models of multi-degree-of-freedom (MDOF) strongly nonlinear dynamical systems are described by coupled second-order differential equations. In general, the exact solutions of MDOF strongly nonlinear dynamical systems are frequently unavailable. Therefore, efforts have been mainly concentrated on the approximate analytical solutions. The homotopy analysis method (HAM) is a useful analytic tool for solving strongly nonlinear dynamical systems, and it provides a simple way to ensure the convergence of solution series by means of a convergence-control parameter \({\hbar}\). Unlike the classical perturbation techniques, this method is independent of the presence of small parameters in the governing equations of motion. In this paper, the HAM is applied to formulate the analytical approximate periodic solutions of MDOF strongly nonlinear coupled van der Pol oscillators. Within this research framework, the frequency and the displacements of two-degree-of-freedom (2-DOF) strongly nonlinear systems can be explicitly obtained. For authentication, comparisons are carried out between the results obtained by the homotopy analysis and numerical integration methods. It is shown that the fourth-order or eighth-order solutions of the present method provide excellent accuracy. Illustrative examples of three-degree-of-freedom (3-DOF) strongly nonlinear coupled van der Pol oscillators are also presented and discussed. Finally, the optimal HAM approach is used to accelerate the convergence of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayfeh A.H., Mook D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  2. Odani K.: The limit cycle of the van der Pol equation is not algebraic. J. Differ. Equ. 115, 146–152 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Liao S.J.: An analytic approximate approach for free oscillations of self-excited systems. Int. J. Non-Linear Mech. 39, 271–280 (2004)

    Article  MATH  Google Scholar 

  4. Chen Y.M., Liu J.K.: A study of homotopy analysis method for limit cycle of van der Pol equation. Commun. Nonlinear Sci. Numer. Simul. 14, 1816–1821 (2009)

    Article  Google Scholar 

  5. Liao, S.J.: The proposed homotopy analysis techniques for the solution of nonlinear problems. PhD dissertation, Shanghai Jiao Tong University, Shanghai (1992)

  6. Allan F.M., Syam M.I.: On the analytic solution of the nonhomogeneous Blasius problem. J. Comput. Appl. Math. 182, 362–371 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Abbasbandy S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A 360, 109–113 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hayat T., Sajid M.: On analytic solution for thin flow of a fourth grade fluid down a vertical cylinder. Phys. Lett. A 361, 316–322 (2007)

    Article  MATH  Google Scholar 

  9. Liao S.J., Chwang A.T.: Application of homotopy analysis method in nonlinear oscillation. ASME J. Appl. Mech. 65, 914–922 (1998)

    Article  MathSciNet  Google Scholar 

  10. Liao S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Allan F.M.: Derivation of the Adomian decomposition method using the homotopy analysis method. Appl. Math. Comput. 190, 6–14 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Abbasbandy S.: The application of homotopy analysis method to solve a generalized Hirot-Satsuma coupled KdV equation. Phys. Lett. A 361, 478–483 (2007)

    Article  MATH  Google Scholar 

  13. Abbasbandy S.: Solitary wave solutions to the Kuramoto-Sivashinsky equaton by means of the homotopy analysis method. Nonlinear Dyn. 52, 35–40 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hayat T. et al.: On the MHD flow of a second grade fluid in a porous channel. Comput. Math. Appl. 54, 407–414 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hayat T., Shahzad F., Ayub M.: Analytical solution for the steady flow of the third grade fluid in a porous half space. Appl. Math. Modell. 31, 2424–2432 (2007)

    Article  MATH  Google Scholar 

  16. Fakhari A., Domairry G., Domairry G.: Approximate explicit solutions of nonlinear BBMB equations by homotopy analysis method and comparison with the exact solution. Phys. Lett. A 368, 64–68 (2007)

    Article  MathSciNet  Google Scholar 

  17. Yabushita K., Yabushita M., Tsuboi K.: An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method. J. Phys. A Math. Theor. 40, 8403–8416 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. He J.H.: Asymptotology by homotopy perturbation method. Appl. Math. Comput. 156, 591–596 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. He J.H.: Homotopy perturbation method for bifurcation of nonlinear problems. Int. J.Nonlinear Sci. Numer. Simul. 6, 207–208 (2005)

    Google Scholar 

  20. He J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20, 1141–1199 (2006)

    Article  MATH  Google Scholar 

  21. He J.H.: An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering. Int. J. Mod. Phys. B 22, 3487–3578 (2008)

    Article  MATH  Google Scholar 

  22. Chowdhury M., Hashim I.: Solutions of time-dependent Emden-Fowler type equations by homotopy perturbation method. Phys. Lett. A 368, 305–313 (2007)

    Article  MathSciNet  Google Scholar 

  23. Odibat Z., Momani S.: Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order. Chaos Solitons Fractals 36, 167–174 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sajid M., Hayat T., Asghar S.: Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt. Nonlinear Dyn. 50, 27–35 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hashim I., Chowdhury M.: Adaptation of homotopy-perturbation method for numeric-analytic solution of system of ODEs. Phys. Lett. A 372, 470–481 (2008)

    Article  MathSciNet  Google Scholar 

  26. Abbasbandy S., Tan Y., Liao S.J.: Newton-homotopy analysis method for nonlinear equations. Appl. Math. Comput. 188, 1794–1800 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wen J.M., Cao Z.C.: Sub-harmonic resonances of nonlinear oscillations with parametric excitation by means of the homotopy analysis method. Phys. Lett. A 371, 427–431 (2007)

    Article  Google Scholar 

  28. Wen J.M., Cao Z.C.: Nonlinear oscillations with parametric excitation solved by homotopy analysis method. Acta Mechanica Sinica 24, 325–329 (2008)

    Article  MathSciNet  Google Scholar 

  29. Pirbodaghi T. et al.: On the homotopy analysis method for nonlinear vibration of beams. Mech. Res. Commun. 36, 143–148 (2009)

    Article  Google Scholar 

  30. Chen Y.M., Liu J.K.: Homotopy analysis method for limit cycle flitter of airfoils. Appl. Math. Comput. 203, 854–863 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wang Z., Zou L., Zhang H.Q.: Applying homotopy analysis method for solving differential-difference equation. Phys. Lett. A 369, 77–84 (2007)

    Article  Google Scholar 

  32. Akyildiz F.T., Vajravelu K., Liao S.J.: A new method for homoclinic solutions of ordinary differential equations.. Chaos Solitons Fractals 39, 1073–1082 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Allan F.M.: Construction of analytic solution to chaotic dynamical systems using the Homotopy analysis method. Chaos Solitons Fractals 39, 1744–1752 (2009)

    Article  MATH  Google Scholar 

  34. Bataineh A.S., Noorani M.S.M., Hashim I.: Solving systems of ODEs by homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 13, 2060–2070 (2008)

    Article  MathSciNet  Google Scholar 

  35. Bataineh A.S., Noorani M.S.M., Hashim I.: On a new reliable modification of homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14, 409–423 (2009)

    Article  MathSciNet  Google Scholar 

  36. Ganjiani M., Ganjiani H.: Solution of coupled system of nonlinear differential equations using homotopy analysis method. Nonlinear Dyn. 56, 159–167 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Alomari A.K., Noorani M.S.M., Nazar R.: Solution of delay differential equation by means of homotopy analysis method. Acta Applicandae Mathematicae 108, 395–412 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Liao S.J.: Notes on the homotopy analysis method: Some definitions and theorems. Commun. Nonlinear Sci. Numer. Simul. 14, 983–997 (2009)

    Article  MathSciNet  Google Scholar 

  39. Nayfeh A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  40. Bogoliuboff N., Mitropolsky Y.A.: Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon & Breach, New York (1962)

    Google Scholar 

  41. Liao S.J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2003–2016 (2010)

    Article  MathSciNet  Google Scholar 

  42. Liang S.X., Jeffrey D.J.: Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation. Commun. Nonlinear Sci. Numer. Simul. 14, 4057–4064 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Qian, Y.H., Yao, M.H. et al. Periodic solutions of multi-degree-of-freedom strongly nonlinear coupled van der Pol oscillators by homotopy analysis method. Acta Mech 217, 269–285 (2011). https://doi.org/10.1007/s00707-010-0405-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0405-7

Keywords

Navigation