Skip to main content
Log in

Nonlinear response of a vertically moving viscoelastic beam subjected to a fluctuating contact load

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the present work, the nonlinear response of a vertically moving viscoelastic beam subjected to a periodically varying contact load is investigated. The generalized Galerkin’s method is used to discretize the nonlinear partial differential equation of motion into the temporal equation of motion. The temporal equation of motion contains many nonlinear terms such as cubic geometric and inertial nonlinear terms, nonlinear damping term, and nonlinear parametric excitation terms in addition to forced excitation and parametric excitation terms. The first-order approximate solutions are obtained by using the method of multiple scales, and the stability and bifurcations of the obtained steady-state responses are studied. Extensive numerical simulations are presented to illustrate the influences of various types of system parameters for different resonance conditions. A significant amount of vibration reduction is obtained with the increase in the material loss factor. The results obtained by numerically solving the temporal equation of motion are found to be in good agreement with the results determined by the method of multiple scales. The obtained results are useful for reduction in the vibration of the viscoelastic flexible beam with prismatic joint or single-link viscoelastic Cartesian manipulator with payload subjected to a sinusoidally varying contact load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saito H., Otomi K.: Parametric response of viscoelastically supported beams. J. Sound Vib. 63, 169–178 (1979)

    Article  MATH  Google Scholar 

  2. Gurgoze M.: Parametric vibrations of a viscoelastic beam (Maxwell model) under steady axial load and transverse displacement excitation at one end. J. Sound Vib. 115, 329–338 (1987)

    Article  Google Scholar 

  3. Shih Y.S., Yeh Z.F.: Dynamic stability of a viscoelastic beam with frequency-dependent modulus. Int. J. Solids Struct. 42, 2145–2159 (2005)

    Article  MATH  Google Scholar 

  4. Fung R.F., Huang J.S., Chen W.H.: Dynamic stability of a viscoelastic beam subjected to harmonic and parametric excitations simultaneously. J. Sound Vib. 198, 1–16 (1998)

    Article  Google Scholar 

  5. Parker R.G., Lin Y.: Parametric instability of axially moving media subjected to multifrequency tension and speed fluctuations. ASME J. Appl. Mech. 68, 49–57 (2001)

    Article  MATH  Google Scholar 

  6. Chen L.Q., Yang X.D., Cheng C.J.: Dynamic stability of an axially accelerating viscoelastic beam. Eur. J. Mech. A Solids 23, 659–666 (2004)

    Article  MATH  Google Scholar 

  7. Chen L.Q., Yang X.D.: Stability in parametric resonance of axially moving viscoelastic beams with time-dependent speed. J. Sound Vib. 284, 879–891 (2005)

    Article  Google Scholar 

  8. Yang X.D., Chen L.Q.: Dynamic stability of axially moving viscoelastic beams with pulsating speed. Appl. Math. Mech. 26, 990–997 (2005)

    Google Scholar 

  9. Ding H., Chen L.Q.: Stability of axially accelerating viscoelastic beams: multi-scale analysis with numerical confirmations. Eur. J. Mech. A/Solids 27, 1108–1120 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Yang X.D., Chen L.Q.: Bifurcation and chaos of an axially accelerating viscoelastic beam. Chaos Solitons Fractals 23, 249–258 (2005)

    Article  MATH  Google Scholar 

  11. Pellicano F., Vestroni F.: Complex dynamic of high-speed axially moving systems. J. Sound Vib. 258, 31–44 (2002)

    Article  Google Scholar 

  12. Kargarnovin M.H., Younesian D., Thompson D.J., Jones C.J.C.: Response of beams on nonlinear viscoelastic foundations to harmonic moving loads. Comput. Struct. 83, 1865–1877 (2005)

    Article  Google Scholar 

  13. Kocatürk T., Simsek M.: Vibration of viscoelastic beams subjected to an eccentric compressive force and a concentrated moving harmonic force. J. Sound Vib. 291, 302–322 (2006)

    Article  Google Scholar 

  14. Gurgoze M., Dogruoglu A.N., Zeren S.: On the eigencharacteristics of a cantilevered visco-elastic beam carrying a tip mass and its representation by a spring-damper-mass system. J. Sound Vib. 301, 420–426 (2007)

    Article  Google Scholar 

  15. Yang X.D., Chen L.Q.: Nonlinear forced vibration of axially moving viscoelastic beams. Acta Mech. Solida Sin. 19, 365–373 (2006)

    Google Scholar 

  16. Mahmoodi S.N., Khadem S.E., Kokabi M.: Non-linear free vibrations of Kelvin–Voigt visco-elastic beams. Int. J. Mech. Sci. 49, 722–732 (2007)

    Article  Google Scholar 

  17. Marynowski K., Kapitaniak T.: Zener internal damping in modeling of axially moving viscoelastic beam with time- dependent tension. Int. J. Non Linear Mech. 42, 118–131 (2007)

    Article  MATH  Google Scholar 

  18. Chen L.Q, Hu D.: Steady-state responses of axially accelerating viscoelastic beams: Approximate analysis and numerical confirmation. Sci. China Ser. G Phys. Mech. Astron. 51, 1707–1721 (2008)

    Article  MathSciNet  Google Scholar 

  19. Wang, L.H., Hu, Z.D., Zhong, Z.D., Ju, J.W.: Dynamic analysis of an axially translating viscoelastic beam with an arbitrarily varying length. Acta Mech. (2010). doi:10.1007/s00707-010-0287-8

    Google Scholar 

  20. Ansari, M., Esmailzadeh, E., Younesian, D.: Internal-external resonance of beams on non-linear viscoelastic foundation traversed by moving load. Nonlinear Dyn. (2010). doi:10.1007/s11071-009-9639-0

    Google Scholar 

  21. Pratiher B., Dwivedy S.K.: Non-linear vibration of a single link viscoelastic Cartesian manipulator. Int. J. Non linear Mech. 43, 683–696 (2008)

    Article  Google Scholar 

  22. Nayfeh A.H., Mook D.T.: Nonlinear Oscillations. Wiley, Canada (1995)

    Book  Google Scholar 

  23. Cartmell M.P.: Introduction to Linear, Parametric and Nonlinear Vibrations. Chapman & Hall, London (1990)

    MATH  Google Scholar 

  24. Nayfeh A.H., Balachandran B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley, Canada (1995)

    Book  MATH  Google Scholar 

  25. Zavodney L.D., Nayfeh A.H.: The nonlinear response of a slender beam carrying lumped mass to a principal parametric excitation: theory and experiment. Int. J. Non Linear Mech. 24, 105–125 (1989)

    Article  MATH  Google Scholar 

  26. Cuvalci O.: The effect of detuning parameters on the absorption region for a coupled system: a numerical and experimental study. J. Sound Vib. 229, 837–857 (2000)

    Article  Google Scholar 

  27. Moon F.C., Pao Y.H.: Vibration and dynamic instability of a beam-plate in a transverse magnetic field. J. Appl. Mech. 36, 92–100 (1969)

    Google Scholar 

  28. Wu G.Y., Tsai R., Shih Y.S.: The analysis of dynamic stability and vibration motions of a cantilever beam with axial loads and transverse magnetic fields. J. Acoust. Soc. ROC 4, 40–55 (2000)

    Google Scholar 

  29. Pratiher B., Dwivedy S.K.: Parametric instability of a cantilever beam with magnetic field and periodic axial load. J. Sound Vib. 305, 904–917 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barun Pratiher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratiher, B., Dwivedy, S.K. Nonlinear response of a vertically moving viscoelastic beam subjected to a fluctuating contact load. Acta Mech 218, 65–85 (2011). https://doi.org/10.1007/s00707-010-0397-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0397-3

Keywords

Navigation