Skip to main content
Log in

Two-dimensional elasticity solution for transient response of simply supported beams under moving loads

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A semi-analytical analysis for the transient elastodynamic response of an arbitrarily thick simply supported beam due to the action of an arbitrary moving transverse load is presented, based on the linear theory of elasticity. The solution of the problem is derived by means of the powerful state space technique in conjunction with the Laplace transformation with respect to the time coordinate. The inversion of Laplace transform has been carried out numerically using Durbin’s approach based on Fourier series expansion. Special convergence enhancement techniques are invoked to completely eradicate spurious oscillations and obtain uniformly convergent solutions. Detailed numerical results for the transient vibratory responses of concrete beams of selected thickness parameters are obtained and compared for three types of harmonic moving concentrated loads: accelerated, decelerated and uniform. The effects of the load velocity, pulsation frequency and beam aspect ratio on the dynamic response are examined. Also, comparisons are made against solutions based on Euler–Bernoulli and Timoshenko beam models. Limiting cases are considered, and the validity of the model is established by comparison with the solutions available in the existing literature as well as with the aid of a commercial finite element package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Timoshenko S.P.: On the forced vibrations of bridges. Philos. Mag. Ser. 6 43, 1018–1019 (1922)

    Article  Google Scholar 

  2. Fryba L.: Vibration of Solids and Structures under Moving Loads. Noordhoff International, Groningen (1999)

    Book  Google Scholar 

  3. Stokes G.: Discussion of a differential equation relating to the breaking of railway bridges. Trans. Cambridge Philos. Soc. 5, 707–735 (1849)

    Google Scholar 

  4. Steele C.R.: The finite beam with a moving load. J. Appl. Mech. Trans. ASME 34, 111 (1967)

    MATH  Google Scholar 

  5. Lee H.P., Ng T.Y.: Dynamic response of a cracked beam subject to a moving load. Acta Mech. 106, 221–230 (1994)

    Article  MATH  Google Scholar 

  6. Jaiswal O.R., Iyengar R.N.: Dynamic response of a beam on elastic foundation of finite depth under a moving force. Acta Mech. 96, 67–83 (1993)

    Article  Google Scholar 

  7. Thambiratnam D., Zhuge Y.: Dynamic analysis of beams on an elastic foundation subjected to moving loads. J. Sound Vibr. 198, 149–169 (1996)

    Article  Google Scholar 

  8. Felszeghy S.F.: The Timoshenko beam on an elastic foundation and subject to a moving step load, part 2: Transient response. J. Vibr. Acoust. 118, 285–291 (1996)

    Article  Google Scholar 

  9. Esmailzadeh E., Ghorashi M.: Vibration analysis of a Timoshenko beam subjected to a traveling mass. J. Sound Vibr. 199, 615–628 (1997)

    Article  Google Scholar 

  10. Abu-Hilal M., Mohsen M.: Vibration of beams with general boundary conditions due to moving harmonic load. J. Sound Vibr. 232, 703–717 (2000)

    Article  Google Scholar 

  11. Yang B., Tan C.A., Bergman L.A.: Direct numerical procedure for the solution of moving oscillator problems. ASCE J. Eng. Mech. 126, 462–469 (2000)

    Article  Google Scholar 

  12. Ichikawa M., Miyakawa Y., Matsuda A.: Vibration analysis of the continuous beam subjected to a moving mass. J. Sound Vibr. 230, 493–506 (2000)

    Article  Google Scholar 

  13. Zhu X.Q., Law S.S.: Precise time-step integration for the dynamic response of a continuous beam under moving loads. J. Sound Vibr. 240, 962–970 (2001)

    Article  Google Scholar 

  14. Michaltsos G.T.: Dynamic behavior of a single-span beam subjected to loads moving with variable speeds. J. Sound Vibr. 258, 359–372 (2002)

    Article  Google Scholar 

  15. Dugush Y.A., Eisenberger M.: Vibrations of non-uniform continuous beams under moving loads. J. Sound Vibr. 254, 911–926 (2002)

    Article  Google Scholar 

  16. Kargarnovin M.H., Younesian D., Thompson D.J., Jones C.J.C.: Response of beams on nonlinear viscoelastic foundations to harmonic moving loads. Comput. Struct. 83, 1865–1877 (2005)

    Article  Google Scholar 

  17. Wang Y.M.: The transient dynamics of multiple accelerating/decelerating masses traveling on an initially curved beam. J. Sound Vibr. 286, 207–228 (2005)

    Article  Google Scholar 

  18. Martínez-Castro A.E., Museros P., Castillo-Linares A.: Semi-analytic solution in the time domain for non-uniform multi-span Bernoulli-Euler beams traversed by moving loads. J. Sound Vibr. 294, 278–297 (2006)

    Article  Google Scholar 

  19. Kocatürk T., Şimşek M.: Dynamic analysis of eccentrically prestressed viscoelastic Timoshenko beams under a moving harmonic load. Comput. Struct. 84, 2113–2127 (2006)

    Article  Google Scholar 

  20. Śniady P.: Dynamic response of a Timoshenko beam to a moving force. J. Appl. Mech. Trans. ASME 75, 0245031–0245034 (2008)

    Google Scholar 

  21. Kiral B.G., Kiral Z.: Dynamic analysis of a symmetric laminated composite beam subjected to a moving load with constant velocity. J. Reinforced Plast. Compos. 27, 19–32 (2008)

    Article  Google Scholar 

  22. Simsek M., Kocaturk T.: Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. Compos. Struct. 90, 465–473 (2009)

    Article  Google Scholar 

  23. Sundara Raja Iyengar K.T., Raman P.V.: Free vibration of rectangular beams of arbitrary depth. Acta Mech. 32, 249–259 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kobayashi H., Okuda T., Sonoda K.: Free vibration of simply supported beams of arbitrary depth. Mem. Faculty Eng. Osaka City Univ. 29, 177–191 (1998)

    Google Scholar 

  25. Kang J.H., Leissa A.W.: Three-dimensional vibration analysis of thick, tapered rods and beams with circular cross-section. Int. J. Mech. Sci. 46, 929–944 (2004)

    Article  MATH  Google Scholar 

  26. Chen W.Q., Lu C.F., Bian Z.G.: Free vibration analysis of generally laminated beams via state-space-based differential quadrature. Compos. Struct. 63, 417–425 (2004)

    Article  Google Scholar 

  27. Chen W.Q., Lu C.F., Bian Z.G.: Elasticity solution for free vibration of laminated beams. Compos. Struct. 62, 75–82 (2003)

    Article  Google Scholar 

  28. Chen W.Q., Lu C.F., Bian Z.G.: A semi-analytical method for free vibration of straight orthotropic beams with rectangular cross-sections. Mech. Res. Commun. 31, 725–734 (2004)

    Article  MATH  Google Scholar 

  29. Chen W.Q., Lu C.F., Bian Z.G.: A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. Appl. Math. Model. 28, 877–890 (2004)

    Article  MATH  Google Scholar 

  30. Ying J., Lu C.F., Chen W.Q.: Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Compos. Struct. 84, 209–219 (2008)

    Article  Google Scholar 

  31. Malekzadeh P., Karami G.: A mixed differential quadrature and finite element free vibration and buckling analysis of thick beams on two-parameter elastic foundations. Appl. Math. Model. 32, 1381–1394 (2008)

    Article  MATH  Google Scholar 

  32. Xu R., Wu Y.: Free vibration and buckling of composite beams with interlayer slip by two-dimensional theory. J. Sound Vibr. 313, 875–890 (2008)

    Article  Google Scholar 

  33. Li Y., Shi Z.: Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature. Compos. Struct. 87, 257–264 (2009)

    Article  Google Scholar 

  34. Barber J.R.: Solid Mechanics and its Applications, Elasticity, 2nd edn. Kluwer, Dordrecht (2002)

    Google Scholar 

  35. Eringen A.C., Suhubi E.S.: Elastodynamics, Volume I: Finite Motion. Academic Press, New York, London (1974)

    Google Scholar 

  36. Bahar L.Y.: A state space approach to elasticity. J. Franklin Inst. 299, 33–41 (1975)

    Article  MATH  Google Scholar 

  37. Hilderbrand F.B.: Advanced Calculus for Applications. Prentice Hall, Englewood Cliffs (1976)

    Google Scholar 

  38. Ogata K.: State Space Analysis of Control Systems. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  39. Durbin F.: Numerical inversion of Laplace transforms: an effective improvement of Dubner and Abate’s method. Comput. J. 17, 371–376 (1973)

    MathSciNet  Google Scholar 

  40. Honig G., Hirdes U.: Method for the numerical inversion of Laplace transforms. J. Comput. Appl. Math. 10, 113–132 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  41. Mallik S.H., Kanoria M.: Generalized thermoelastic functionally graded solid with a periodically varying heat source. Int. J. Solids Struct. 44, 7633–7645 (2007)

    Article  MATH  Google Scholar 

  42. Zhang P., Geers T.L.: Excitation of a fluid filled submerged spherical shell by a transient acoustic wave. J. Acoust. Soc. Am. 93, 696–705 (1993)

    Article  Google Scholar 

  43. Esmailzadeh E., Ghorashi M.: Vibration analysis of beams traversed by uniform partially distributed moving masses. J. Sound Vibr. 184, 9–17 (1995)

    Article  MATH  Google Scholar 

  44. ANSYS: User’s Manual (version 10.0). Swanson Analysis Systems Inc., Houston (2007)

  45. Xiang Y., Zhang L.: Free vibration analysis of stepped circular Mindlin plates. J. Sound Vibr. 280, 633–655 (2005)

    Article  Google Scholar 

  46. Lu C.F., Huang Z.Y., Chen W.Q.: Semi-analytical solutions for free vibration of anisotropic laminated plates in cylindrical bending. J. Sound Vibr. 304, 987–995 (2007)

    Article  Google Scholar 

  47. Huang Y.H., Ma C.C.: Forced vibration analysis of piezoelectric quartz plates in resonance. Sens. Actuat. A 149, 320–330 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed M. Hasheminejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasheminejad, S.M., Rafsanjani, A. Two-dimensional elasticity solution for transient response of simply supported beams under moving loads. Acta Mech 217, 205–218 (2011). https://doi.org/10.1007/s00707-010-0393-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0393-7

Keywords

Navigation