A refined high-order global-local theory for finite element bending and vibration analyses of laminated composite beams


A refined high-order global-local laminated/sandwich beam theory is developed that satisfies all the kinematic and stress continuity conditions at the layer interfaces and considers effects of the transverse normal stress and transverse flexibility, e.g. for beams with soft cores or drastic material properties changes. The global displacement components, described by polynomial or combinations of polynomial and exponential expressions, are superposed on local ones chosen based on the layerwise or discrete-layer concepts. Furthermore, the non-zero conditions of the shear and normal tractions of the upper and lower surfaces of the beam may also be enforced. In the present C1-continuous shear locking-free finite element model, the number of unknowns is independent of the number of layers. Comparison of present bending and vibration results for thin and thick beams with results of the three-dimensional theory of elasticity reveals efficiency of the present method. Moreover, the proposed model is computationally economic and has a high convergence rate.

This is a preview of subscription content, log in to check access.


  1. 1

    Carrera E., Brischetto S.A.: Survey with numerical assessment of classical and refined theories for the analysis of sandwich plates. Appl. Mech. Rev. 62(010803), 1–17 (2009)

    Google Scholar 

  2. 2

    Zhang Y.X., Yang C.H.: Recent developments in finite element analysis for laminated composite plates. Compos. Struct. 88, 147–157 (2009)

    Article  Google Scholar 

  3. 3

    Hu H., Belouettar S., Potier-Ferry M., Daya E.M.: Review and assessment of various theories for modeling sandwich composites. Compos. Struct. 84, 282–292 (2008)

    Article  Google Scholar 

  4. 4

    Pagano N.J.: Exact solutions for composite laminates in cylindrical bending. J. Compos. Mater. 3, 398–411 (1969)

    Article  Google Scholar 

  5. 5

    Pagano N.J.: Exact solutions for rectangular bi-direction composites and sandwich plates. J. Compos. Mater. 4, 20–34 (1970)

    Google Scholar 

  6. 6

    Pagano N.J., Hatfield S.J.: Elastic behavior of multilayered bidirectional composites. AIAA J. 10, 931–9331 (1972)

    Article  Google Scholar 

  7. 7

    Stavsky Y., Loewy R.: On vibrations of heterogeneous orthotropic shells. J. Sound Vibr. 15, 235–236 (1971)

    MATH  Article  Google Scholar 

  8. 8

    Reissner E.: The effects of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12, 69–76 (1945)

    MathSciNet  Google Scholar 

  9. 9

    Mindlin R.D.: Influence of rotatory inertia and shear in flexural motions of isotropic elastic plates. ASME J. Appl. Mech. 18, 1031–1036 (1951)

    Google Scholar 

  10. 10

    Whitney J.M.: The effects of transverse shear deformation on the bending of laminated plates. J. Compos. Mater. 3, 534–547 (1969)

    Article  Google Scholar 

  11. 11

    Reddy J.N.: Mechanics of laminated composite plates and shells: Theory and analysis. 2nd edn. CRC Press, Boca Raton (2004)

    Google Scholar 

  12. 12

    Reddy J.N.: A generalization of two-dimensional theories of laminated composite plates. Commun. Appl. Numer. Meth. 3, 173–180 (1987)

    MATH  Article  Google Scholar 

  13. 13

    Reddy J.N., Barbero E.J., Teply J.: A plate bending element based on a generalized laminate plate theory. Int. J. Numer. Meth. Eng. 28, 2275–2292 (1989)

    MATH  Article  Google Scholar 

  14. 14

    Barbero E.J., Reddy J.N., Teply J.: An accurate determination of stresses in thick laminates using a generalized plate theory. Int. J. Numer. Meth. Eng. 29, 1–14 (1990)

    MATH  Article  Google Scholar 

  15. 15

    Robbins D.H. Jr, Reddy J.N.: Modeling of thick composites using a layerwise laminate theory. Int. J. Numer. Meth. Eng. 36, 655–677 (1993)

    MATH  Article  Google Scholar 

  16. 16

    Heuer R.: Static and dynamic analysis of transversely isotropic, moderately thick sandwich beams by analogy. Acta Mech. 91, 1–9 (1992)

    MATH  Article  MathSciNet  Google Scholar 

  17. 17

    Adam C., Ziegler F.: Forced flexural vibrations of elastic-plastic composite beams with thick layers. Compos. Part B 28, 201–213 (1997)

    Article  Google Scholar 

  18. 18

    Adam C.: Moderately large vibrations of imperfect elastic-plastic composite beams with thick layers. Int. J. Acoustics Vib. 7, 11–20 (2002)

    Google Scholar 

  19. 19

    Adam C.: Nonlinear flexural vibrations of layered panels with initial imperfections. Acta Mech. 181, 91–104 (2006)

    MATH  Article  Google Scholar 

  20. 20

    Lekhnitskii, S.G.: Strength calculation of composite beams. Vestnik inzhen i tekhnikov, No 9 (1935)

  21. 21

    Ren J.G.: Bending theory of laminated plates. Compos. Sci. Tech. 27, 225–248 (1986)

    Article  Google Scholar 

  22. 22

    Ren J.G., Owen D.R.J.: Vibration and buckling of laminated plates. Int. J. Solids Struct. 25, 95–106 (1989)

    MATH  Article  Google Scholar 

  23. 23

    Ambartsumian, S.A.: Theory of anisotropic plates. Translated from Russian by Cheron T and Edited by Ashton JE., Tech. Pub. Co. (1969)

  24. 24

    Whitney J.M.: The effects of transverse shear deformation on the bending of laminated plates. J. Compos. Mater. 3, 534–547 (1969)

    Article  Google Scholar 

  25. 25

    Icardi U.: Eight-noded zig-zag element for deflection and stress analysis of plates with general lay-up. Compos. Part B 29, 425–441 (1998)

    Article  Google Scholar 

  26. 26

    Icardi U.: Higher-order zig-zag model for analysis of thick composite beams with inclusion of transverse normal stress and sublaminates approximations. Compos. Part B 32, 343–354 (2001)

    Article  Google Scholar 

  27. 27

    Icardi U.: A three-dimensional zig-zag theory for analysis of thick laminated beams. Compos. Struct. 52, 123–135 (2001)

    Article  Google Scholar 

  28. 28

    Reissner E.: On a mixed variational theorem and on a shear deformable plate theory. Int. J. Numer. Meth. Eng. 23, 193–198 (1986)

    MATH  Article  Google Scholar 

  29. 29

    Murakami H.: A laminated beam theory with interlayer slip. J. Appl. Mech. 51, 551–559 (1984)

    MATH  Article  Google Scholar 

  30. 30

    Murakami H.: Laminated composite plate theory with improved in-plane responses. J. Appl. Mech. 53, 661–666 (1986)

    MATH  Article  Google Scholar 

  31. 31

    Carrera E.: A study of transverse normal stress effects on vibration of multilayered plates and shells. J. Sound Vibr. 225, 803–829 (1999)

    Article  Google Scholar 

  32. 32

    Carrera E.: Single-layer vs multi-layers plate modeling on the basis of Reissner’s mixed theorem. AIAA J. 38, 342–343 (2000)

    Article  Google Scholar 

  33. 33

    Vidal P., Polit O.: A family of sinus finite elements for the analysis of rectangular laminated beams. Compos. Struct. 84, 56–72 (2008)

    Article  Google Scholar 

  34. 34

    Beheshti-Aval S.B., Lezgy-Nazargah M.: A finite element model for composite beams with piezoelectric layers using a sinus model. J. Mech. 26, 249–258 (2010)

    Google Scholar 

  35. 35

    Carrera E.: Historical review of Zig-Zag theories for multilayered plates and shells. Appl. Mech. Rev. 56, 287–308 (2003)

    Article  Google Scholar 

  36. 36

    Li X., Liu D.: Generalized laminate theories based on double superposition hypothesis. Int. J. Numer. Meth. Eng. 40, 1197–1212 (1997)

    MATH  Article  Google Scholar 

  37. 37

    Shariyat M.: Non-linear dynamic thermo-mechanical buckling analysis of the imperfect sandwich plates based on a generalized three-dimensional high-order global–local plate theory. Compos. Struct. 92, 72–85 (2010)

    Article  Google Scholar 

  38. 38

    Shariyat M.: A generalized high-order global–local plate theory for nonlinear bending and buckling analyses of imperfect sandwich plates subjected to thermo-mechanical loads. Compos. Struct. 92, 130–143 (2010)

    Article  Google Scholar 

  39. 39

    Shariyat M.: A generalized global–local high-order theory for bending and vibration analyses of sandwich plates subjected to thermo-mechanical loads. Int. J. Mech. Sci. 52, 495–514 (2010)

    Article  Google Scholar 

  40. 40

    Carrera E., Brischetto S.: Analysis of thickness locking in classical, refined and mixed multilayered plate theories. Compos. Struct. 82, 549–562 (2008)

    Article  Google Scholar 

  41. 41

    Lo K.H., Christensen R.M., Wu E.M.: A high-order theory of plate deformation, Part II: Laminated plates. J. Appl. Mech. 44, 663–676 (1977)

    MATH  Article  Google Scholar 

  42. 42

    Manjunatha B.S., Kant T.: New theories for symmetric/unsymmetric composite and sandwich beams with C0 finite elements. Compos. Struct. 23, 61–73 (1993)

    Article  Google Scholar 

  43. 43

    Reddy J.N.: Theory and Analysis of Elastic Plates and Shells, 2nd ed. CRC/Taylor & Francis, London (2007)

    Google Scholar 

  44. 44

    Shariyat M.: Dynamic thermal buckling of suddenly heated temperature-dependent FGM cylindrical shells, under combined axial compression and external pressure. Int. J. Solids Struct. 45, 2598–2612 (2008)

    MATH  Article  Google Scholar 

  45. 45

    Shariyat M.: Dynamic buckling of suddenly loaded imperfect hybrid FGM cylindrical shells with temperature-dependent material properties under thermo-electro-mechanical loads. Int. J. Mech. Sci. 50, 1561–1571 (2008)

    Article  Google Scholar 

  46. 46

    Shariyat M.: Dynamic buckling of imperfect laminated plates with piezoelectric sensors and actuators subjected to thermo-electro-mechanical loadings, considering the temperature-dependency of the material properties. Compos. Struct. 88, 228–239 (2009)

    Article  Google Scholar 

  47. 47

    Shariyat M.: Vibration and dynamic buckling control of imperfect hybrid FGM plates with temperature-dependent material properties subjected to thermo-electro-mechanical loading conditions. Compos. Struct. 88, 240–252 (2009)

    Article  Google Scholar 

  48. 48

    Polit O., Touratier M., Lory P.: A new eight-node quadrilateral shear bending plate finite element. Int. J. Numer. Meth. Eng. 37, 387–411 (1994)

    MATH  Article  MathSciNet  Google Scholar 

  49. 49

    Bekuit J.-J.R.B., Oguamanam D.C.D., Damisa O.: A quasi-2D finite element formulation for the analysis of sandwich beams. Finite Elem. Anal. Des. 43, 1099–1107 (2007)

    Article  Google Scholar 

  50. 50

    Kapuria S., Dumir P.C., Jain N.K.: Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams. Compos. Struct. 64, 317–327 (2004)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. Shariyat.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lezgy-Nazargah, M., Shariyat, M. & Beheshti-Aval, S.B. A refined high-order global-local theory for finite element bending and vibration analyses of laminated composite beams. Acta Mech 217, 219–242 (2011). https://doi.org/10.1007/s00707-010-0391-9

Download citation


  • Transverse Shear
  • Composite Beam
  • Soft Core
  • Face Sheet
  • Sandwich Beam