Skip to main content
Log in

Effects of the initial stress on the propagation and localization properties of Rayleigh waves in randomly disordered layered piezoelectric phononic crystals

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the effects of the initial stress on the propagation and localization properties of the Rayleigh surface waves in randomly disordered layered piezoelectric phononic crystals are studied. Due to different mechanical properties between the piezoelectric material and the polymer, different initial stresses in these two layers satisfying the equilibrium condition and interfacial compatibility are considered, which is more suitable for the practical cases. The transfer matrix between two consecutive piezoelectric unit cells is derived according to the continuity conditions. The expression of the localization factor is presented, and the wave localization properties are analyzed. Numerical calculations for the PVDF/PZT–2 periodic composites with the initial stress are performed. The band gap characteristics are studied taking the mechanical and electrical coupling into account. It is found that the localization degree can be influenced by the piezoelectric constants. With the increase in the piezoelectric constant, the stop band regions are enlarged for the ordered structures, and the localization properties of Rayleigh waves are strengthened for the disordered systems. The Rayleigh waves will be localized in mistuned periodic piezoelectric composites. The characteristics of band gaps and wave localization in ordered and disordered piezoelectric phononic crystals can be significantly changed by tuning the initial stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phani A.S., Woodhouse J., Fleck N.A.: Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119, 1995–2005 (2006)

    Article  Google Scholar 

  2. Tanaka Y., Yano T., Tamura S.I.: Surface guided waves in two-dimensional phononic crystals. Wave Motion 44, 501–512 (2007)

    Article  MathSciNet  Google Scholar 

  3. Hussein M.I., Hulbert G.M., Scott R.A.: Dispersive elastodynamics of 1D banded materials and structures: analysis. J. Sound Vib. 289, 779–806 (2006)

    Article  Google Scholar 

  4. Bigoni D., Gei M., Movchan A.B.: Dynamics of a prestressed stiff layer on an elastic half space: filtering and band gap characteristics of periodic structural models derived from long-wave asymptotics. J. Mech. Phys. Solids 56, 2494–2520 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fang N.Y., Wu F.G., Zhang X., Zhong H.L., Mu Z.F.: Acoustic band gaps in three-dimensional CsCl-type periodic liquid composites. Solid State Commun. 148, 267–270 (2008)

    Article  Google Scholar 

  6. Liu Y., Su J.Y., Gao L.T.: The influence of the micro-topology on the phononic band gaps in 2D porous phononic crystals. Phys. Lett. A 372, 6784–6789 (2008)

    Article  Google Scholar 

  7. Liu Y., Su J.Y., Xu Y.L., Zhang X.C.: The influence of pore shapes on the band structures in phononic crystals with periodic distributed void pores. Ultrasonics 49, 276–280 (2009)

    Article  Google Scholar 

  8. Hou Z.L., Wu F.G., Liu Y.Y.: Phononic crystals containing piezoelectric material. Solid State Commun. 130, 745–749 (2004)

    Article  Google Scholar 

  9. Khelif A., Aoubiza B., Mohammadi S., Adibi A., Laude V.: Complete band gaps in two-dimensional phononic crystal slabs. Phys. Rev. E 74, 046610 (2006)

    Article  Google Scholar 

  10. Vasseur J.O., Hladky-Hennion A.C., Djafari-Rouhani B., Duval F., Dubus B., Pennec Y., Deymier P.A.: Waveguiding in two-dimensional piezoelectric phononic crystal plates. J. Appl. Phys. 101, 114904 (2007)

    Article  Google Scholar 

  11. Yang J.S., Wang J.: Dynamic anti-plane problems of piezoceramics and applications in ultrasonics–a review. Acta Mechanica Solida Sinica 21, 207–220 (2008)

    Google Scholar 

  12. Zou X.Y., Chen Q., Liang B., Cheng J.C.: Control of the elastic wave bandgaps in two-dimensional piezoelectric periodic structures. Smart Mater. Struct. 17, 015008 (2008)

    Article  Google Scholar 

  13. Yang M.Y., Wu L.C., Tseng J.Y.: Phonon-polariton in two-dimensional piezoelectric phononic crystals. Phys. Lett. A 372, 4730–4735 (2008)

    Article  Google Scholar 

  14. Gonella S., To A.C., Liu W.K.: Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J. Mech. Phys. Solids 57, 621–633 (2009)

    Article  MATH  Google Scholar 

  15. Pang Y., Wang Y.S., Liu J.X., Fang D.N.: A study of the band structures of elastic wave propagating in piezoelectric/ piezomagnetic layered periodic structures. Smart Mater. Struct. 19, 055012 (2010)

    Article  Google Scholar 

  16. Liu J.X., Wei W.Y., Fang D.N.: Propagation behaviors of shear horizontal waves in piezoelectric-piezomagnetic periodically layered structures. Acta Mechanica Solida Sinica 23, 77–84 (2010)

    Google Scholar 

  17. Liu H., Wang Z.K., Wang T.J.: Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure. Int. J. Solids Struct. 38, 37–51 (2001)

    Article  MATH  Google Scholar 

  18. Du J.K., Xian K., Wang J., Yong Y.K.: Propagation of Love waves in prestressed piezoelectric layered structures loaded with viscous liquid. Acta Mechanica Solida Sinica 21, 542–548 (2008)

    Google Scholar 

  19. Laude V., Wilm M., Benchabane S., Khelif A.: Full band gap for surface acoustic waves in a piezoelectric phononic crystal. Phys. Rev. E 71, 036607 (2005)

    Article  Google Scholar 

  20. Sun J.H., Wu T.T.: Propagation of acoustic waves in phononic-crystal plates and waveguides using a finite-difference time-domain method. Phys. Rev. B 76, 104304 (2007)

    Article  Google Scholar 

  21. Kokkonen K., Kaivola M., Benchabane S., Khelif A., Laude V.: Scattering of surface acoustic waves by a phononic crystal revealed by heterodyne interferometry. Appl. Phys. Lett. 91, 083517 (2007)

    Article  Google Scholar 

  22. Yan Z.Z., Wang Y.S.: Calculation of band structures for surface waves in two-dimensional phononic crystals with a wavelet-based method. Phys. Rev. B 78, 094306 (2008)

    Article  MathSciNet  Google Scholar 

  23. Dick V.P.: Conditions of light localization in non-absorbing disordered media. Waves Random Complex Media 18, 479–493 (2008)

    Article  Google Scholar 

  24. Wang Y.Z., Li F.M., Huang W.H., Wang Y.S.: The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. J. Mech. Phys. Solids 56, 1578–1590 (2008)

    Article  MATH  Google Scholar 

  25. Liu H., Kuang Z.B., Cai Z.M.: Propagation of Bleustein-Gulyaev waves in a prestressed layered piezoelectric structure. Ultrasonics 41, 397–405 (2003)

    Article  Google Scholar 

  26. Shang F.L., Wang Z.K., Li Z.H.: An exact analysis of thermal buckling of piezoelectric laminated plates. Acta Mechanica Solida Sinica 10, 95–107 (1997)

    Google Scholar 

  27. Fahmy M.A., EI-Shahat T.M.: The effect of initial stress and inhomogeneity on the thermoelastic stresses in a rotating anisotropic solid. Arch. Appl. Mech. 78, 431–442 (2008)

    Article  MATH  Google Scholar 

  28. Sharma J.N., Pal M., Chand D.: Propagation characteristics of Rayleigh waves in transversely isotropic piezothermoelastic materials. J. Sound Vib. 284, 227–248 (2005)

    Article  Google Scholar 

  29. Sharma J.N., Walia V.: Effect of rotation on Rayleigh waves in piezothermoelastic half space. Intern. J. Solids Struct. 44, 1060–1072 (2007)

    Article  MATH  Google Scholar 

  30. Castanier M.P., Pierre C.: Lyapunov exponents and localization phenomena in multi-coupled nearly periodic systems. J. Sound Vib. 183, 493–515 (2005)

    Article  MathSciNet  Google Scholar 

  31. Xie W.C.: Buckling mode localization in rib–stiffened plates with randomly misplaced stiffeners. Comput. Struct. 67, 175–189 (1998)

    Article  MATH  Google Scholar 

  32. Wolf A., Swift J.B., Swinney H.L., Vastano J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Ming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YZ., Li, FM. & Kishimoto, K. Effects of the initial stress on the propagation and localization properties of Rayleigh waves in randomly disordered layered piezoelectric phononic crystals. Acta Mech 216, 291–300 (2011). https://doi.org/10.1007/s00707-010-0371-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0371-0

Keywords

Navigation