Skip to main content
Log in

Stress concentration in two-dimensional lattices with imperfections

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based on the principle of superposition and a newly developed stripe method, an analytical equivalent model is proposed to calculate the stress fields in two imperfect planar isotropic lattices: the regular triangular lattice and the Kagome lattice, both containing single bar defects. Finite element simulations are used to validate the model predictions. According to the degree of the imperfection, four types of defects: vacancy defect, weak defect, strong defect, and rigid inclusion are classified and the induced local stress fields are analyzed. The stress concentration factor (SCF) caused by the imperfection is analytically obtained, and the influence of the imperfection degree, loading condition, and relative density on the SCF is quantified. Based on the equivalent model, the interaction of dual defects with the thickness of elastic boundary layer in the two lattices is also estimated. In the presence of a vacancy defect, the distinct deformation mechanism results in only a small knock-down in the strength of a triangular lattice but a substantial strength knock-down of a Kagome lattice. Both lattices exhibit no obvious sensitivity to the presence of a rigid inclusion. It is indicated that compared with the corresponding Kagome lattice, the triangular lattice containing a single missing bar possesses a considerable better strength performance. In addition, the analytical results of imperfection interaction demonstrate that the influence of imperfections on stress field calculations and strength analysis is important for the triangular lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans A.G., Hutchinson J.W., Ashby M.F.: Multifunctionality of cellular metal systems. Prog. Mater. Sci. 43, 171–221 (1998)

    Article  Google Scholar 

  2. Deshpande V.S., Ashby M.F., Fleck N.A.: Foam topology: bending versus stretching dominated architectures. Acta Mater. 49(6), 1035–1040 (2001)

    Article  Google Scholar 

  3. Deshpande V.S., Fleck N.A., Ashby M.F.: Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1724–1769 (2001)

    Article  Google Scholar 

  4. Gu S., Lu T.J., Evans A.G.: On the design of 2D cellular metals for combined heat dissipation and structural load capacity. Int. J. Heat Mass Transf. 44, 2163–2175 (2001)

    Article  MATH  Google Scholar 

  5. Kim T., Hodson H.P., Lu T.J.: Fluid-flow and endwall heat-transfer characteristics of an ultralight lattice-frame material. Int. J. Heat Mass Transf. 47, 1129–1140 (2004)

    Article  Google Scholar 

  6. Tian J., Kim T., Lu T.J., Hodson H.P., Queheillalt D.T., Wadley H.N.G.: The effects of topology upon fluid-flow and heat-transfer within cellular copper structures. Int. J. Heat Mass Transf. 47, 3171–3186 (2004)

    Article  MATH  Google Scholar 

  7. Deshpande V.S., Fleck N.A.: Energy absorption of an egg-box material. J. Mech. Phys. Solids 51, 187–208 (2003)

    Article  MATH  Google Scholar 

  8. Fleck N.A., Deshpande V.S.: The resistance of clamped sandwich beams to shock loading. J. Appl. Mech. Trans. ASME 71(3), 386–401 (2004)

    Article  MATH  Google Scholar 

  9. Xue Z., Hutchinson J.W.: A comparative study of blast-resistant metal sandwich plates. Int. J. Impact Eng. 30(11), 1283–1305 (2004)

    Article  Google Scholar 

  10. Qiu X., Deshpande V.S., Fleck N.A.: Impulsive loading of clamped monolithic and sandwich beams over a central patch. J. Mech. Phys. Solids 53(5), 1015–1046 (2005)

    Article  MATH  Google Scholar 

  11. Hutchinson R.G., Wicks N., Evans A.G., Fleck N.A., Hutchinson J.W.: Kagome plate structures for actuation. Int. J. Solids Struct. 40, 6969–6980 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Wicks N., Guest S.D.: Single member actuation in large repetitive truss structures. Int. J. Solids Struct. 41, 965–978 (2004)

    Article  MATH  Google Scholar 

  13. Symons D.D., Shieh J., Fleck N.A.: Actuation of the Kagome double layer grid. part 2: effect of imperfections on the measured and predicted actuation stiffness. J. Mech. Phys. Solids 53, 1875–1891 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gibson L.J., Ashby M.F.: Cellular Solids: Structure and Properties, 2nd edn. Cambridge Solid State Science Series. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  15. Torquato S., Gibiansky L.V., Silva M.J., Gibson L.J.: Effective mechanical and transport properties of cellular solids. Int. J. Mech. Sci. 40, 71–82 (1998)

    Article  MATH  Google Scholar 

  16. Chung J., Waas A.M.: The inplane elastic properties of circular cell and elliptical cell honeycombs. Acta Mech. 144, 29–42 (2000)

    Article  MATH  Google Scholar 

  17. Chung J., Waas A.M.: In-plane biaxial crush response of polycarbonate honeycombs. J. Eng. Mech. ASCE 127(2), 180–193 (2001)

    Article  Google Scholar 

  18. Silva M.J., Hayes W.C., Gibson L.J.: The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. Int. J. Mech. Sci. 37, 1161–1177 (1995)

    Article  MATH  Google Scholar 

  19. Grenestedt J.L.: Influence of wavy imperfections in cell walls on elastic stiffness of cellular solids. J. Mech. Phys. Solids 46, 29–50 (1998)

    Article  MATH  Google Scholar 

  20. Simone A.E., Gibson L.J.: The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams. Acta Mater. 46(6), 2139–2150 (1998)

    Article  Google Scholar 

  21. Chen C., Lu T.J., Fleck N.A.: Effect of imperfections on the yielding of two-dimensional foams. J. Mech. Phys. Solids 47, 2235–2272 (1999)

    Article  MATH  Google Scholar 

  22. Chung J., Waas A.M.: Compressive response of circular cell polycarbonate honeycombs under inplane biaxial static and dynamic loading. Part I: experiments. Int. J. Impact Eng. 27(7), 729–754 (2002)

    Article  Google Scholar 

  23. Chung J., Waas A.M.: Compressive response of circular cell polycarbonate honeycombs under inplane biaxial static and dynamic loading—Part II: simulations. Int. J. Impact Eng. 27(10), 1015–1047 (2002)

    Article  Google Scholar 

  24. Chung J., Waas A.M.: Elastic imperfection sensitivity of hexagonally packed circular-cell honeycombs. Proc. R. Soc. A Math. Phys. Eng. Sci. 458, 2851–2868 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Symons, D.D., Fleck, N.A.: The imperfection sensitivity of isotropic two-dimensional elastic lattices. J. Appl. Mech. Trans. ASME 75, 051011-1–051011-8 (2008)

    Google Scholar 

  26. Chen C., Lu T.J., Fleck N.A.: Effect of inclusions and holes on the stiffness and strength of honeycombs. Int. J. Mech. Sci. 43, 487–504 (2001)

    Article  MATH  Google Scholar 

  27. Wallach J.C., Gibson L.J.: Defect sensitivity of a 3D truss material. Scr. Mater. 45(6), 639–644 (2001)

    Article  Google Scholar 

  28. Zhu H.X., Hobdell J.R., Windle A.H.: Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. J. Mech. Phys. Solids 49, 857–870 (2001)

    Article  MATH  Google Scholar 

  29. Fleck N.A., Qiu X.: The damage tolerance of elastic-brittle, two dimensional isotropic lattices. J. Mech. Phys. Solids 55(3), 562–588 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Phani, A.S., Fleck, N.A.: Elastic boundary layers in two-dimensional isotropic lattices. J. Appl. Mech. Trans. ASME 30, 021020-1–021020-8 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daining Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, X., Zhang, Y., Zhao, H. et al. Stress concentration in two-dimensional lattices with imperfections. Acta Mech 216, 105–122 (2011). https://doi.org/10.1007/s00707-010-0354-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0354-1

Keywords

Navigation