Skip to main content
Log in

Interface corners in piezoelectric materials

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Through proper arrangement, the constitutive law, strain-displacement relation and equilibrium equation of piezoelectric materials can be written in the same mathematical form as those of elastic materials and hence Stroh formalism can be extended for piezoelectric analysis. Based on this viewpoint, the authors’ previous works for fracture analysis of anisotropic elastic materials, e.g. the eigen-relation for determining singular orders, the near-tip solutions, and the unified definition of stress intensity factors for interface corners, can also be applied to piezoelectric materials. In this paper, the theoretical framework of our previous works is briefly introduced, and then an efficient and accurate computing method (H-integral) and its required auxiliary solutions are derived for extracting the stress/electric intensity factors of interface corners made up of piezoelectric materials. This theoretical framework and H-integral form a universal solution technique that is valid for the fracture analysis of cracks, corners, interface cracks, and interface corners. Besides, the special cases that suggest how we simulate elastic insulators/conductors from piezoelectric materials are discussed. Several numerical examples are dealt with to display the feasibility and applicability of the proposed approaches, and finally, a numerical example which exhibits how the electric load influences the fracture behavior is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuo C.M., Barnett D.M.: Stress singularities of interfacial cracks in bonded piezoelectric half-planes. In: Wu, J.J., Ting, T.C.T., Barnett, D.M. (eds) Modern Theory of Anisotropic Elasticity and Applications, pp. 33–50. SIAM, Philadelphia (1991)

    Google Scholar 

  2. Suo Z., Kuo C.M., Barnett D.M., Willis J.R.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40(4), 739–765 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Rogacheva N.N.: The Theory of Piezoelectric Shells and Plates. CRC Press, London (1994)

    Google Scholar 

  4. Ting T.C.T.: Anisotropic Elasticity: Theory and Applications. Oxford Science Publications, New York (1996)

    MATH  Google Scholar 

  5. Sosa H.: Plane problems in piezoelectric media with defects. Int. J. Solids Struct. 28, 491–505 (1991)

    Article  MATH  Google Scholar 

  6. Sosa H.: On the fracture mechanics of piezoelectric solids. Int. J. Solids Struct. 29, 2613–2622 (1992)

    Article  MATH  Google Scholar 

  7. Park S.B., Sun C.T.: Effect of electric field on fracture of piezoelectric ceramics. Int. J. Fract. 70, 203–216 (1995)

    Article  Google Scholar 

  8. Liang Y.C., Hwu C.: Electromechanical analysis of defects in piezoelectric materials. Smart Mater. Struct. 5, 314–320 (1996)

    Article  Google Scholar 

  9. Kumar S., Singh R.N.: Influence of applied electric field and mechanical boundary condition on the stress distribution at the crack tip in piezoelectric materials. Mater. Sci. Eng. A. 231, 1–9 (1997)

    Article  Google Scholar 

  10. Kumar S., Singh R.N.: Effect of mechanical boundary condition at the crack surfaces on the stress distribution at the crack tip in piezoelectric materials. Mater. Sci. Eng. A. 252, 64–77 (1998)

    Article  Google Scholar 

  11. Xu X.L., Rajapakse R.K.N.D.: On singularities in composite piezoelectric wedges and junctions. Int. J. Solids Struct. 37, 3253–3275 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ou Z.C., Wu X.: On the crack-tip stress singularity of interfacial cracks in transversely isotropic bimaterials. Int. J. Solids Struct. 40, 7499–7511 (2003)

    Article  MATH  Google Scholar 

  13. Ou Z.C., Chen Y.H.: Interface crack problem in elastic dielectric/piezoelectric bimaterials. Int. J. Fract. 130, 427–454 (2004)

    Article  Google Scholar 

  14. Weng S.M., Chue C.H.: The stress singularities at the apex of composite piezoelectric junctions. Arch. Appl. Mech. 73, 638–649 (2004)

    Article  MATH  Google Scholar 

  15. Hwu C., Omiya M., Kishimoto K.: A key matrix N for the stress singularity of the anisotropic elastic composite wedges. JSME Int. J. Ser. A 46(1), 40–50 (2003)

    Article  Google Scholar 

  16. Hwu C., Lee W.J.: Thermal effect on the singular behaviour of multi-bonded anisotropic wedges. J. Therm. Stresses 27(2), 111–136 (2004)

    Article  Google Scholar 

  17. Hwu C., Kuo T.L.: A unified definition for stress intensity factors of interface corners and cracks. Int. J. Solids Struct. 44, 6340–6359 (2007)

    Article  MATH  Google Scholar 

  18. Kuo, T.L., Hwu, C.: Multi-order stress intensity factors along three-dimensional interface corners. ASME J. Appl. Mech. 77, published online 031020-1-031020-12 (2010)

  19. Hwu C., Ikeda T.: Electromechanical fracture analysis for corners and cracks in piezoelectric materials. Int. J. Solids Struct. 45, 5744–5764 (2008)

    Article  MATH  Google Scholar 

  20. Hwu C.: Collinear cracks in anisotropic bodies. Int. J. Fract. 52, 239–256 (1991)

    Google Scholar 

  21. Hwu C., Yen W.J.: Green’s functions of two-dimensional anisotropic plates containing an elliptic hole. Int. J. Solids Struct. 27(13), 1705–1719 (1991)

    Article  MATH  Google Scholar 

  22. Hwu C., Yen W.J.: Plane problems for anisotropic bodies with an elliptic hole subjected to arbitrary loadings. J. Mech. (Chin. J. Mech.) 8(2), 123–129 (1992)

    Google Scholar 

  23. Hwu C.: Explicit solutions for the collinear interface cracks problems. Int. J. Solids Struct. 30(3), 301–312 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. McMeeking R.M.: Crack tip energy release rate for a piezoelectric compact tension specimen. Eng. Fract. Mech. 64, 217–244 (1999)

    Article  Google Scholar 

  25. McMeeking R.M.: Towards a fracture mechanics for brittle piezoelectric and dielectric materials. Int. J. Fract. 108, 25–41 (2001)

    Article  Google Scholar 

  26. Sokolnikoff I.S.: Mathematical Theory of Elasticity. 2nd edn. McGraw Hill, New York (1956)

    MATH  Google Scholar 

  27. Bueckner, H.F.: Field singularities and related integral representations. In: Sih, G.C. (ed) Mechanics of Fracture, 1. pp. 239–314 (1973)

  28. Stern M.: A boundary integral representation for stress intensity factors. Recent Adv. Eng. Sci. 7, 125–132 (1973)

    Google Scholar 

  29. Rice J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. ASME J. Appl. Mech. 35, 379–386 (1968)

    Google Scholar 

  30. Chen Y.Z.: New path independent integrals in linear elastic fracture mechanics. Eng. Fract. Mech. 22, 673–686 (1985)

    Article  Google Scholar 

  31. Ma L.F., Chen Y.H.: Weight function for interface cracks in dissimilar anisotropic piezoelectric materials. Int. J. Fract. 64, 263–279 (2001)

    Article  Google Scholar 

  32. Hwu C.: Some explicit expressions of extended Stroh formalism for two-dimensional piezoelectric anisotropic elasticity. Int. J. Solids Struct. 45, 4460–4473 (2008)

    Article  MATH  Google Scholar 

  33. Li Q., Chen Y.H.: Solution of the semi-permeable interface crack in dissimilar piezoelectric materials. ASME J. Appl. Mech. 74, 833–844 (2007)

    Article  Google Scholar 

  34. Li, Q., Chen, Y.H.: Solution of the semi-permeable interface crack in elastic dielectric/piezoelectric bimaterials. ASME J. Appl. Mech. 75, 011010-1-011010-13 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chyanbin Hwu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwu, C., Kuo, TL. Interface corners in piezoelectric materials. Acta Mech 214, 95–110 (2010). https://doi.org/10.1007/s00707-010-0318-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0318-5

Keywords

Navigation