Skip to main content
Log in

Mixture law including particle-size effect on fracture toughness of nano- and micro-spherical particle-filled composites

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The effects of particle diameter and volume fraction on fracture toughness of nano- and micro-spherical particle-filled composites were investigated. The purpose was to create a mixture law of fracture toughness based on experimental results of spherical silica particle–filled epoxy composites and a theoretical approach. The fracture toughness of composites was found to be tailored independently by exchanging different particle sizes, and elastic and viscoelastic properties were found to be governed by the volume fraction of the particles. In a theoretical analysis, a mixture law of fracture toughness, composed of the elastic moduli, diameter, and volume fraction of particles and the elastic moduli of matrix resins was proposed. Its validity was demonstrated in a comparison with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamat S.V., Hirth J.P., Mehrabian R.: Mechanical properties of particulate-reinforced aluminum-matrix composites. Acta Metallurgica 37, 2395–2402 (1989)

    Article  Google Scholar 

  2. Evans A.G.: The strength of brittle materials containing second phase dispersions. Philos. Mag. 26, 1327–1344 (1972)

    Article  Google Scholar 

  3. Green D.J., Nicholson P.S., Embury J.D.: Fracture of a brittle particulate composite, part 2 theoretical aspects. J. Mater. Sci. 14, 1657–1661 (1979)

    Article  Google Scholar 

  4. Bower A.F., Ortiz M.: Three-dimensional analysis of crack trapping and bridging by tough particles. J. Mech. Phys. Solids 39, 815–858 (1991)

    Article  MATH  Google Scholar 

  5. Cui C., Wu R., Li Y., Shen Y.: Fracture toughness of in situ TiCp-AlNp/Al composite. J. Mater. Process. Tech. 100, 36–41 (2000)

    Article  Google Scholar 

  6. Qiao Y.: Fracture toughness of composite materials reinforced by debondable particulates. Scripta Materialia 49, 491–496 (2003)

    Article  Google Scholar 

  7. Adachi T., Osaki M., Araki W., Kwon S.-C.: Fracture toughness of nano- and micro-spherical silica-particle-filled epoxy composites. Acta Materialia 56, 2101–2109 (2009)

    Article  Google Scholar 

  8. Adachi T., Araki W., Nakahara T., Yamaji A., Gamou M.: Fracture toughness of silica particulate-filled epoxy. J. Appl. Polym. Sci. 86, 2261–2265 (2002)

    Article  Google Scholar 

  9. Kwon S.-C., Adachi T., Araki W., Yamaji A.: Thermo-viscoelastic properties of silica particulate reinforced epoxy composites: considered in terms of particle packing model. Acta Materialia 54, 3369–3374 (2006)

    Article  Google Scholar 

  10. Bansal P.P., Ardell A.J.: Average nearest-neighbor distances between uniformly distributed finite particles. Metallography 5, 97–111 (1972)

    Article  Google Scholar 

  11. Kwon S.-C., Adachi T., Araki W., Yamaji A.: Effect of particle size on fracture toughness of spherical-silica particle filled epoxy composites. Key Eng. Mater. 297-300, 207–212 (2005)

    Article  Google Scholar 

  12. Kwon S.-C., Adachi T.: Strength and fracture toughness of nano and micron-silica particles bidispersed epoxy composites: evaluated by fragility parameter. J. Mater. Sci. 42, 5516–5523 (2007)

    Article  Google Scholar 

  13. Kwon S.-C., Adachi T., Araki W., Yamaji A.: Mechanical properties of nano/micro-silica particles bidispersed epoxy composites. Key Eng. Mater. 345-346, 1507–1510 (2007)

    Article  Google Scholar 

  14. Kwon S.-C., Adachi T., Araki W., Yamaji A.: Effect of composing particles of two sizes on mechanical properties of spherical silica-particulate-reinforced epoxy composites. Compos. Part B 39, 740–746 (2008)

    Article  Google Scholar 

  15. Kwon S.-C., Adachi T., Araki W.: Temperature dependence of fracture toughness of silica/epoxy composites: related to microstructure of nano- and micro-particles packing. Compos. Part B 39, 773–781 (2008)

    Article  Google Scholar 

  16. Lewis T.B., Nielsen L.E.: Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 14, 1449–1471 (1970)

    Article  Google Scholar 

  17. Hashin Z., Shtrikman S.: A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shen H., Fawaz Z.: Thermal behavior of an elliptic inhomogeneity surrounded by a compliant interphase layer. Acta Mechanica 159, 29–38 (2002)

    Article  MATH  Google Scholar 

  19. Zhang H., Zhang Z., Friedrich K., Eger C.: Property improvement of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Materialia 54, 1833–1842 (2006)

    Article  Google Scholar 

  20. Eshlby, J.D.: Elastic inclusions and inhomogeneities. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solids Mechanics 2, pp. 89–140. North-Holland (1961)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadaharu Adachi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adachi, T., Araki, W. & Higuchi, M. Mixture law including particle-size effect on fracture toughness of nano- and micro-spherical particle-filled composites. Acta Mech 214, 61–69 (2010). https://doi.org/10.1007/s00707-010-0314-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0314-9

Keywords

Navigation