Skip to main content
Log in

Efficient finite element with physical and electric nodes for transient analysis of smart piezoelectric sandwich plates

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents an assessment of a recently developed quadrilateral element with four physical nodes and one electrical node, based on a coupled improved zigzag theory, for the transient response of smart sandwich plates with electroded piezoelectric sensors and actuators. The novel features of the element include the use of electric nodes to model the equipotential condition of the electroded surface of sensors and actuators, and the inclusion of the d 33-effect on transverse deflection. The assessment is done for a skew plate in comparison with a converged three-dimensional finite element solution obtained using ABAQUS. The accuracy as well as the computational efficiency of the present element is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benjeddou A.: Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput. Struct. 76, 347–363 (2000)

    Article  Google Scholar 

  2. Heyliger P.R., Ramirez G., Saravanos D.A.: Coupled discrete-layer finite elements for laminated piezoelectric plates. Commun. Numer. Meth. Eng. 10, 971–981 (1994)

    Article  MATH  Google Scholar 

  3. Saravanos D.A., Heyliger P.R., Hopkins D.A.: Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates. Int. J. Solids Struct. 34, 359–378 (1997)

    Article  MATH  Google Scholar 

  4. Saravanos D.A.: Mixed laminate theory and finite element for smart piezoelectric composite shell structures. AIAA J. 35, 1327–1333 (1997)

    Article  MATH  Google Scholar 

  5. Polit O., Bruant I.: Electric potential approximations for an eight node plate finite element. Comput. Struct. 84, 1480–1493 (2006)

    Article  Google Scholar 

  6. Kapuria S.: A coupled zig-zag third order theory for piezoelectric hybrid cross-ply plates. ASME J. Appl. Mech. 71, 604–614 (2004)

    Article  MATH  Google Scholar 

  7. Kapuria S., Kulkarni S.D.: An efficient quadrilateral element based on improved zigzag theory for dynamic analysis of hybrid plates with electroded piezoelectric actuators and sensors. J. Sound Vib. 315, 118–145 (2008)

    Article  Google Scholar 

  8. Tiersten H.F.: Linear Piezoelectric Plate Vibrations. Plenum Publishing Corporation, New York (1969)

    Google Scholar 

  9. Jeychandrabose C., Kirkhope J., Meekisho L.: An improved discrete Kirchhoff quadrilateral thin-plate bending element. Int. J. Numer. Meth. Eng. 24, 635–654 (1987)

    Article  Google Scholar 

  10. Zienkiewicz O.C., Taylor R.L.: The Finite Element Method: Solid Mechanics, vol. 2. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

  11. Tzou H.S., Tseng C.I.: Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a piezoelectric finite element approach. J. Sound Vib. 138, 17–34 (1990)

    Article  Google Scholar 

  12. Vasques C.M.A., Rodrigues J.D.: Coupled three-layered analysis of smart piezoelectric beams with different electric boundary conditions. Int. J. Numer. Meth. Eng. 62, 1488–1518 (1990)

    Article  Google Scholar 

  13. Petyt M.: Introduction to Finite Element Vibration Analysis. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kapuria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapuria, S., Kulkarni, S.D. Efficient finite element with physical and electric nodes for transient analysis of smart piezoelectric sandwich plates. Acta Mech 214, 123–131 (2010). https://doi.org/10.1007/s00707-010-0309-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0309-6

Keywords

Navigation