Skip to main content
Log in

A generalized screw dislocation near a wedge-shaped magnetoelectroelastic bi-material interface

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The magnetoelectroelastic solution of a generalized screw dislocation interacting with a wedge-shaped magnetoelectroelastic bi-material interface is derived in this paper. The screw dislocation is assumed to be straight and infinitely long in the z-direction and suffers a finite discontinuity in the displacement, electric potential and magnetic potential across the slip plane. The explicit closed-form analytical solution for the generalized stress field is derived by means of the complex variable and conformal mapping methods. The generalized stress intensity factors of the wedge tip induced by the dislocation and the image force acting on the dislocation are formulated and calculated. The influence of the wedge angle and the different bi-material constant combinations on the image force is discussed. Numerical examples for three particular wedge angles are calculated and compared with other available results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogy D.B., Wang K.C.: Stress singularities at interface corners in bonded dissimilar isotropic elastic materials. Int. J. Solids Struct. 7, 993–1005 (1971)

    Article  MATH  Google Scholar 

  2. Chen D.H., Nisitani H.: Singular stress fields near the corner of jointed dissimilar materials. J. Appl. Mech. 60, 607–613 (1993)

    Article  MATH  Google Scholar 

  3. Reedy E.D., Guess T.R.: Interface corner failure analysis of joint strength: effect of adherend stiffness. Int. J. Fract. 88, 305–314 (1997)

    Article  Google Scholar 

  4. Reedy E.D.: Connection between interface corner and interfacial fracture analysis of an adhesively bonded butt joint. Int. Solids Struct. 37, 2429–2442 (2000)

    Article  MATH  Google Scholar 

  5. Pahn L.O., Earmme Y.Y.: Analysis of a short interfacial crack from the corner of a rectangular inclusion. Int. J. Fract. 106, 341–356 (2000)

    Article  Google Scholar 

  6. Nan C.W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phase. Phys. Rev. B 50, 6082–6088 (1994)

    Article  Google Scholar 

  7. Chung M.Y., Ting T.C.T.: The Green function for a piezoelectric piezomagnetic anisotropic elastic medium with an elliptic hole or rigid inclusion. Philos. Mag. Lett. 72, 405–410 (1995)

    Article  Google Scholar 

  8. Wu T.L., Huang J.H.: Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases. Int. J. Solids Struct. 37, 2981–3009 (2000)

    Article  MATH  Google Scholar 

  9. Liu J.X., Liu X.L., Zhao Y.B.: Green’s functions for anisotropic magnetoelectro-elastic solids with an elliptical cavity or a crack. Int. J. Eng. Sci. 39, 1405–1418 (2001)

    Article  Google Scholar 

  10. Pan E.: Exact solution for simply supported and multilayered magneto-electro-elastic plates. ASME J. Appl. Mech. 68, 608–618 (2001)

    Article  MATH  Google Scholar 

  11. Wang X., Shen Y.P.: Inclusions of arbitrary shape in magnetoelectroelastic composite materials. Int. J. Eng. Sci. 41, 85–102 (2003)

    Article  MathSciNet  Google Scholar 

  12. Gao C.F., Tong P., Zhang T.Y.: Fracture mechanics for a mode III crack in a magnetoelectroelastic solid. Int. J. Solids Struct. 41, 6613–6629 (2004)

    Article  MATH  Google Scholar 

  13. Fang Q.H., Liu Y.W., Jiang C.P.: On the interaction between a generalized screw dislocation and circular-arc interfacial rigid lines in magnetoelectroelastic solids. Int. J. Eng. Sci. 43, 1011–1031 (2005)

    Article  Google Scholar 

  14. Hu K.Q., Li G.Q., Zhong Z.: Fracture of a rectangular piezoelectromagnetic body. Mech. Res. Commun. 33, 482–492 (2006)

    Article  MATH  Google Scholar 

  15. Xiao Z.M., Chen B.J., Fan H.: An edge dislocation interacting with a wedge-shaped bi-material interface. Int. J. Solids Struct. 38, 8219–8233 (2001)

    Article  MATH  Google Scholar 

  16. Chen B.J., Xiao Z.M., Liew K.M.: A piezoelectric screw dislocation near a wedge-shaped bi-material interface. Int. J. Solids Struct. 40(9), 2041–2056 (2003)

    Article  MATH  Google Scholar 

  17. Muskhelishvili N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff International Publishing, Leyden (1975)

    MATH  Google Scholar 

  18. Pak Y.E.: Force on a piezoelectric screw dislocation. ASME J. Appl. Mech. 57, 647–653 (1990)

    Article  MATH  Google Scholar 

  19. Huang J.L., Liu K.H., Dai W.L.: The optimized fiber volume fraction for magnetoelectric coupling effect in piezoelectric-piezomagnetic continuous fiber reinforced composites. Int. J. Eng. Sci. 38, 1207–1217 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Z.M., Chen, B.J. & Luo, J. A generalized screw dislocation near a wedge-shaped magnetoelectroelastic bi-material interface. Acta Mech 214, 261–273 (2010). https://doi.org/10.1007/s00707-010-0286-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0286-9

Keywords

Navigation