Skip to main content
Log in

A two-scale homogenization framework for nonlinear effective thermal conductivity of laminated composites

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, we formulate the effective temperature-dependent thermal conductivity of laminated composites. The studied laminated composites consist of laminas (plies) made of unidirectional fiber-reinforced matrix with various fiber orientations. The effective thermal conductivity is obtained through a two-scale homogenization scheme. A simplified micromechanical model of a unidirectional fiber-reinforced lamina is formulated at the lower scale. Thermal conductivities of fiber and matrix constituents are allowed to change with temperature. The upper scale uses a sublaminate model to homogenize temperature-dependent thermal conductivities of only a representative lamina stacking sequence in laminated composites. The effective thermal conductivity of each lamina, in the sublaminate model, is obtained using the simplified micromechanical model. The thermal conductivities from the micromechanical and sublaminate models represent average nonlinear properties of fictitiously homogeneous composite media. Interface conditions between fiber and matrix constituents and within laminas are assumed to be perfect. Experimental data available in the literature are used to verify the proposed multi-scale framework. We then analyze transient heat conduction in the homogenized composites. Temperature profiles, during transient heat conduction, in the homogenized composites are compared to the ones in heterogeneous composites. The heterogeneous composites, having different fiber arrangements and sizes, are modeled using finite element (FE) method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aboudi J.: Mechanics of Composite Materials: A Unified Micromechanical Approach. Elsevier, Amsterdam (1991)

    MATH  Google Scholar 

  2. Averill R.C., Yip Y.C.: Development of simple, robust, finite elements based on refined theories for thick laminated beam. Comput. Struct. 59(3), 529–546 (1996)

    Article  MATH  Google Scholar 

  3. Benveniste Y., Chen T., Dvorak G.J.: The effective thermal conductivity of composite reinforced by coated cyllindrically orthotropic fibers. J. Appl. Phys. 67, 2878–2884 (1990)

    Article  Google Scholar 

  4. Cho Y.B, Averill R.C.: First order zig-zag sublaminate plate theory and finite element model for laminated composite and sandwich panels. Composite Struct. 50(1), 1–15 (2000)

    Article  Google Scholar 

  5. Chung P.W., Tamma K.K., Namburu R.R.: Homogenization of temperature-dependent thermal conductivity in composite materials. J. Thermophys. Heat Transf. 15, 10–17 (2001)

    Article  Google Scholar 

  6. Drugan W.J., Willis J.R.: A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J. Mech. Phys. Solids 44, 497–524 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Farmer J.D., Covert E.E.: Thermal conductivity of a thermosetting advanced composite during its cure. J. Thermophys. Heat Transf. 10, 467–475 (1996)

    Article  Google Scholar 

  8. Fish J., Shek K.: Multiscale analysis of composite materials and structures. Composite Sci. Technol. 60, 2547–2556 (2000)

    Article  Google Scholar 

  9. Ganapathysubramanian B., Zabaras N.: Modeling multiscale diffusion processes in random heterogeneous media. Comput. Methods Appl. Mech. Eng. 197, 3560–3573 (2008)

    Article  MathSciNet  Google Scholar 

  10. Goyheneche J.M., Cosculluela A.: A multiscale model for the effective thermal conductivity tensor of a stratified composite material. Int. J. Thermophys. 26, 191–202 (2005)

    Article  Google Scholar 

  11. Haj-Ali R.M., Muliana A.H.: A multi-scale constitutive framework for the nonlinear analysis of laminated composite materials and structures. Int. J. Solids Struct. 41(13), 3461–3490 (2004)

    Article  MATH  Google Scholar 

  12. Haj-Ali, R.: Nested nonlinear multiscale framework for the analysis of thick-section composite materials and structures. In Kwon, Y. W., Allen, D.H., Talreja, R. (eds.) Multiscale Modeling and Simulation of Composite Materials and Structures, pp. 332–371. Springer Pub., ISBN 978-0-387-36318-938 (2007)

  13. Haj-Ali R., Muliana A.H.: A micro-to-meso sublaminate model for the viscoelastic analysis of thick-section multi-layered frp composite structures. Mech. Time-dependent Mater. 12(1), 69–93 (2008)

    Article  Google Scholar 

  14. Hashin Z.: Assessment of the self consistent scheme approximation: conductivity of particulate composites. J. Composite Mater. 2, 284–300 (1968)

    Article  Google Scholar 

  15. Hill R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phyis. Solids 13, 213–222 (1963)

    Article  Google Scholar 

  16. Jiang M., Jasiuk I., Ostoja-Starzewski M.O.: Apparent elastic and elastoplastic behavior of periodic composites. Int. J. Solids Struct. 39, 199–212 (2002)

    Article  MATH  Google Scholar 

  17. Jiang M., Jasiuk I., Ostoja-Starzewski M.O.: Apparent thermal conductivity of periodic two-dimensional composites. Comput. Mater. Sci. 25, 329–338 (2002)

    Article  Google Scholar 

  18. Kaminski M.: Homogenization based finite element analysis of unidirectional composites by classical and multiresolutional techniques. Computer. Method Appl. Mech. Eng. 194, 2147–2173 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Khan K.A., Muliana A.H.: Effective thermal properties of viscoelastic composites with field dependent constituent properties. Acta Mech. 209, 153–178 (2010)

    Article  MATH  Google Scholar 

  20. Kolodziej J.A., Konczak Z.: Determination of effective thermal conductivity for a laminated composite slab in a nonlinear case. Int. Commun. Heat Mass Transf. 21, 403–410 (1994)

    Article  Google Scholar 

  21. Kouznetsova V., Brekelmans W.A.M., Baaijens F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Comput. Mech. 27, 37–48 (2001)

    Article  MATH  Google Scholar 

  22. Kulkarni M.R., Brady R.P.: A model of global thermal conductivity in laminated carbon/carbon composites. Composite Sci. Technol. 57, 277–285 (1997)

    Article  Google Scholar 

  23. Lee Y.M., Yung R.B., Gao S.S: A generalized self consistent method for calulation of effective thermal conductivity of composites with interfacial contact conductance. Int. Commun. Heat Mass Transf. 33, 142–150 (2006)

    Article  Google Scholar 

  24. Lewis T., Nielsen L.: Dynamic mechanical properties of particulate-filled polymers. J Appl. Polym. Sci. 14, 1449–1471 (1970)

    Article  Google Scholar 

  25. McIvor S.D., Darby M.I., Wostenholm G.H., Yates B.: Thermal conductivity measurements of some glass and carbon fiber reinforced plastics. J. Mater. Sci. 25, 3127–3132 (1990)

    Article  Google Scholar 

  26. Monteiro E., Yvonnet J., He Q.C.: Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction. Comput. Mater. Sci. 42, 704–712 (2008)

    Article  Google Scholar 

  27. Muliana A.H., Sawant S.: Viscoelastic responses of polymer composites with temperature and time dependent constituents. Acta Mech. 204, 155–173 (2009)

    Article  MATH  Google Scholar 

  28. Noor A.K., Shah R.S.: Effective thermoelastic and thermal properties of unidirectional fiber reinforced composites and their sensitivity coefficients. Composite Struct. 26, 7–23 (1993)

    Article  Google Scholar 

  29. Ozdemir I., Brekelmans W.A.M., Geers M.G.D.: Computational homogenization for heat conduction in heterogeneous solids. In.t J. Numer. Methods Eng. 73, 185–204 (2008)

    Article  MathSciNet  Google Scholar 

  30. Pilling M.W., Yates B., Black M.A.: The thermal conductivity of carbon fibre-reinforced composites. J. Mater. Sci. 14, 1326–1338 (1979)

    Article  Google Scholar 

  31. Rolfes R., Hammerschmidt U.: Transverse thermal conductivity of CFRP laminates: a numerical and experimental validation of approximation formula. Composite Sci. Technol. 54, 45–54 (1995)

    Article  Google Scholar 

  32. Springer G.S., Tsai S.W.: Thermal conductivities of unidirectional materials. J. Composite Mater. 1, 166–173 (1967)

    Article  Google Scholar 

  33. Yu Q., Fish J.: Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoealstic example problem. Int. J. Solids Struct. 39, 6429–6452 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Hanifah Muliana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muliana, A.H., Kim, J.S. A two-scale homogenization framework for nonlinear effective thermal conductivity of laminated composites. Acta Mech 212, 319–347 (2010). https://doi.org/10.1007/s00707-009-0264-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0264-2

Keywords

Navigation