Skip to main content
Log in

The exact theory of one-dimensional quasicrystal deep beams

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Without employing ad hoc assumptions, various equations and solutions for quasicrystal beams are deduced systematically and directly from the plane problem of one-dimensional quasicrystals. These equations and solutions can be used to construct the exact theory of deep beams for extension or compression and bending deformation forms. A method for the solution of two-dimensional equations is presented, and with the method the exact theory can now be explicitly established from the general solution of quasicrystals and the Lur’e method. The exact governing equations for beams under transverse loadings are derived directly from the exact beam theory. In three illustrative examples of quasicrystal beams it is shown that the exact or accurate solutions can be obtained by use of the exact theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shechtman D., Blech I., Gratias D., Cahn J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)

    Article  Google Scholar 

  2. Levine D., Steinhardt P.J.: Quasi-crystals: a new class of ordered structure. Phys. Rev. Lett. 53, 2450–2477 (1984)

    Article  Google Scholar 

  3. Wollgarten M., Beyss M., Urban K., Liebertz H., Koster U.: Direct evidence for plastic deformation of quasicrystals by means of a dislocation mechanism. Phys. Rev. Lett. 71, 549–552 (1993)

    Article  Google Scholar 

  4. Athanasiou N.S., Politis C., Spirlet J.C., Baskoutas S., Kapaklis V.: The significance of valence electron concentration on the formation mechanism of some ternary aluminum-based quasicrystals. Int. J. Mod. Phys. B 16, 4665–4683 (2002)

    Article  Google Scholar 

  5. Park J.Y., Ogletree D.F., Salmeron M., Ribeiro R.A., Canfield P.C., Jenks C.J., Thiel P.A.: High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science 309, 1354–1356 (2005)

    Article  Google Scholar 

  6. Park J.Y., Sacha G.M., Enachescu M., Ogletree D.F., Ribeiro R.A., Canfield P.C., Jenks C.J., Thiel P.A.: Sensing dipole fields at atomic steps with combined scanning tunneling and force microscopy. Phys. Rev. Lett. 95, 136802 (2005)

    Article  Google Scholar 

  7. Bak P.: Phenomenological theory of icosahedron incommensurate (quasiperiodic) order in Mn–Al alloys. Phys. Rev. Lett. 54, 1517–1519 (1985)

    Article  Google Scholar 

  8. Bak P.: Symmetry, stability and elastic properties of icosahedron incommensurate crystals. Phys. Rev. B 32, 3764–3772 (1985)

    MathSciNet  Google Scholar 

  9. Lubencky T.C., Ramaswany S.R., Toner J.: Hydrodynamics of icosahedral quasi-crystals. Phys. Rev. B 32, 7444–7452 (1985)

    Article  Google Scholar 

  10. Levine D., Lubensky T.C., Ostlund S., Ramaswamy S., Steinhardt P.J., Toner J.: Elasticity and dislocations in pentagonal and icosahedral quasicrystals. Phys. Rev. Lett. 54, 1520–1523 (1985)

    Article  Google Scholar 

  11. Socolar J.E.S.: Simple octagonal and dodecagonal quasicrystals. Phys. Rev. B 39, 10519–10551 (1989)

    Article  MathSciNet  Google Scholar 

  12. Ding D.H, Yang W.G., Hu C.Z., Wang R.H.: Generalized elasticity theory of quasicrystals. Phys. Rev. B 48, 7003–7010 (1993)

    Article  Google Scholar 

  13. Wang R.H., Yang W.G., Hu C.Z., Ding D.H.: Point and space groups and elastic behaviours of one-dimensional quasi-crystals. J. Phys. Condens. Matter 9, 2411–2422 (1997)

    Article  Google Scholar 

  14. Hu C.Z., Wang R.H., Ding D.H.: Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Rep. Prog. Phys. 63, 1–39 (2000)

    Article  MathSciNet  Google Scholar 

  15. Fan T.Y., Mai Y.W.: Elasticity theory, fracture mechanics, and some relevant thermal properties of quasi-crystalline materials. Appl. Mech. Rev. 57, 325–343 (2004)

    Article  Google Scholar 

  16. Cheng S.: Elasticity theory of plates and a refined theory. ASME J. Appl. Mech. 46, 644–650 (1979)

    MATH  Google Scholar 

  17. Barrett K.E., Ellis S.: An exact theory of elastic plates. Int. J. Solids Struct. 24, 859–880 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wang W., Shi M.X.: Thick plate theory based on general solutions of elasticity. Acta Mech. 123, 27–36 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang F.Y.: Two-dimensional theories deduced from three-dimensional theory for a transversely isotropic body. I. Plate problems. Int. J. Solids Struct. 26, 445–470 (1990)

    Google Scholar 

  20. Gao Y., Wang M.Z.: The refined theory of magnetoelastic rectangular beams. Acta Mech. 173, 147–161 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gao Y., Wang M.Z.: A refined beam theory based on the refined plate theory. Acta Mech. 177, 191–1197 (2005)

    Article  MATH  Google Scholar 

  22. Gao Y., Xu B.X., Zhao B.S.: The refined theory of beams for a transversely isotropic body. Acta Mech. 191, 109–122 (2007)

    Article  MATH  Google Scholar 

  23. Gao Y., Wang M.Z.: The refined theory of transversely isotropic piezoelectric rectangular beams. Sci. China Ser. G 49, 473–486 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gao Y., Xu B.X., Zhao B.S., Chang T.C.: New general solutions of plane elasticity of one-dimensional quasicrystals. Phys. Status Solidi B 245, 20–27 (2008)

    Article  Google Scholar 

  25. Lur’e A.I.: Three-dimensional Problems of the Theory of Elasticity. Interscience, New York (1964)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y. The exact theory of one-dimensional quasicrystal deep beams. Acta Mech 212, 283–292 (2010). https://doi.org/10.1007/s00707-009-0257-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0257-1

Keywords

Navigation