Skip to main content

Advertisement

Log in

Nonlinear electro-thermo-viscoelasticity

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A coupled theory of nonlinear electro-thermo-viscoelasticity with inclusion of hysteresis, aging and damage effects is developed based on non-equilibrium thermodynamics. In consideration of the Gibbs free energy including the contribution of the free electric field as a functional of the histories of stress, temperature, temperature gradient and electric field in the reference configuration with damage being introduced as an internal state variable, constitutive relations and kinetic laws are obtained from the energy balance equation and the entropy production inequality. Finite electro-thermo-viscoelasticity and nonlinear electro-thermo- elasticity can be taken as special cases. A superposition principle of time, aging, temperature, stress and electric field is proposed for materials with memory on an intrinsic time scale so that the long-term property functions may be represented with horizontal and vertical shifting of the momentary master curves. This formulation lays a foundation for the characterization of the short- and long-term behavior of time-dependent materials with evolving damage under combined electric, thermal and mechanical loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dorfmann A., Ogden R.W.: Nonlinear magnetoelastic deformations of elastomers. Acta Mech. 167, 13–28 (2003)

    Article  Google Scholar 

  2. Dorfmann A., Ogden R.W.: Nonlinear electroelasticity. Acta Mech. 174, 167–183 (2005)

    Article  MATH  Google Scholar 

  3. Dorfmann A., Ogden R.W.: Nonlinear electroelastic deformations. J. Elasticity 82, 99–127 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bustamante R., Ogden R.W.: Universal relations for nonlinear electroelastic solids. Acta Mech. 182, 125–140 (2006)

    Article  MATH  Google Scholar 

  5. Bustamante R., Dorfmann A., Ogden R.W.: Nonlinear electroelastostatics: a variational framework. ZAMP 60, 154–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. McMeeking R.M., Landis C.M.: Electrostatic forces and stored energy for deformable dielectric materials. J. Appl. Mech. 72, 581–590 (2005)

    Article  MATH  Google Scholar 

  7. McMeeking R.M., Landis C.M., Jimenez S.M.A.: A principle of virtual work for combined electrostatic and mechanical loading of materials. Int. J. Non Linear Mech. 42, 831–838 (2007)

    Article  Google Scholar 

  8. Vu D.K., Steinmann P.: Nonlinear electro- and magneto-elastostatics: material and spatial settings. Int. J. Solids Struct. 44, 7891–7905 (2007)

    Article  MATH  Google Scholar 

  9. Suo Z., Zhao X., Greene W.: A nonlinear field theory of deformable dielectrics. J. Mech. Phys. Solids 56, 467–486 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen X.: Crack driving force and energy–momentum tensor in electroelastodynamic fracture. J. Mech. Phys. Solids 57, 1–9 (2009)

    Article  MATH  Google Scholar 

  11. Schapery R.A.: Nonlinear viscoelastic solids. Int. J. Solids Struct. 37, 359–366 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schapery R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9, 295–310 (1969)

    Article  Google Scholar 

  13. Schapery R.A.: Nonlinear viscoelastic constitutive equations for composites based on work potentials. Appl. Mech. Rev. 47, S269–S275 (1994)

    Article  Google Scholar 

  14. Schapery R.A.: Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech. Time Depend. Mater. 1, 209–240 (1997)

    Article  Google Scholar 

  15. Bassiouny E., Ghaleb A.F., Maugin G.A.: Thermodynamical formulation for coupled electromechanical hysteresis effects. Int. J. Eng. Sci. 26, 1279–1306 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Maugin G.A.: On canonical equations of continuum thermomechanics. Mech. Res. Commun. 33, 705–710 (2006)

    Article  MathSciNet  Google Scholar 

  17. Christensen R.M.: Theory of Viscoelasticity—An Introduction, 2nd edn. Academic Press, New York (1982)

    Google Scholar 

  18. Caruthers J.M., Adolf D.B., Chambers R.S., Shrikhande P.: A thermodynamically consistent, nonlinear viscoelastic approach for modeling glassy polymers. Polymer 45, 4577–4597 (2004)

    Article  Google Scholar 

  19. Chen X., Wang S.S.: A thermodynamic approach to long-term deformation and damage for polymeric materials in hygrothermal environment. Key Eng. Mater. 312, 21–26 (2006)

    Article  Google Scholar 

  20. Chen X.: On magneto-thermo-viscoelastic deformation and fracture. Int. J. Non Linear Mech. 44, 244–248 (2009)

    Article  Google Scholar 

  21. Eringen A.C.: Mechanics of Continua, 2nd edn. Robert E. Krieger Publishing Company, Malabar (1980)

    Google Scholar 

  22. Maugin G.A.: Continuum Mechanics of Electromagnetic Solids. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  23. Lemaitre J.: A Course on Damage Mechanics, 2nd edn. Springer, New York (1996)

    MATH  Google Scholar 

  24. Abdel-Tawab K., Weitsman Y.J.: A strain-based formulation for the coupled viscoelastic/damage behavior. J. Appl. Mech. 68, 304–311 (2001)

    Article  MATH  Google Scholar 

  25. Struik L.C.E.: Physical Aging in Amorphous Polymers and Other Materials. Elsevier, Amsterdam (1978)

    Google Scholar 

  26. Bradshaw R.D., Brinson L.C.: Mechanical response of linear viscoelastic composite laminates incorporating non-isothermal physical aging effects. Compos. Sci. Technol. 59, 1411–1427 (1999)

    Article  Google Scholar 

  27. Zheng S.F., Weng G.J.: A new constitutive equation for the long-term creep of polymers based on physical aging. Eur. J. Mech. A/Solids 21, 411–421 (2002)

    Article  MATH  Google Scholar 

  28. Muliana A., Khan K.A.: A time-integration algorithm for thermo-rheologically complex polymers. Comput. Mater. Sci. 41, 576–588 (2008)

    Article  Google Scholar 

  29. Sawant S., Muliana A.: A thermo-mechanical viscoelastic analysis of orthotropic materials. Compos. Struct. 83, 61–72 (2008)

    Article  Google Scholar 

  30. Zhang Q.M., Zhao J., Cross L.E.: Aging of the dielectric and piezoelectric properties of relaxor ferroelectric lead magnesium niobate-lead titanate in the electric field biased state. J. Appl. Phys. 79, 3181–3187 (1996)

    Article  Google Scholar 

  31. Zhang Q.M., Zhao J., Shrout T.R., Cross L.E.: The effect of ferroelectric coupling in controlling the abnormal aging behavior in lead magnesium niobate-lead titanate relaxor ferroelectrics. J. Mater. Res. 12, 1777–1784 (1997)

    Article  Google Scholar 

  32. Priya S., Ryu J., Uchino K., Viehland D.: Mechanical aging behavior of oriented Pb(Mg1/3Nb2/3)O3–PbTiO3 and Pb(Zn1/3Nb2/3)O3–PbTiO3 single crystals. Appl. Phys. Lett. 79, 2624–2626 (2001)

    Article  Google Scholar 

  33. Koh J.-H., Jeong S.-J., Ha M.-S., Song J.-S.: Dynamic observation in piezoelectric aging behavior of Pb(MgNb) O3-Pb(ZrTi)O3 multilayer ceramic actuators. Ferroelectrics 332, 117–122 (2006)

    Article  Google Scholar 

  34. Diani J., Fayolle B., Gilormini P.: A review on the Mullins effect. Eur. Polym. J. 45, 601–612 (2009)

    Article  Google Scholar 

  35. Coquelle E., Bossis G.: Mullins effect in elastomers filled with particles aligned by a magnetic field. Int. J. Solids Struct. 43, 7659–7672 (2006)

    Article  MATH  Google Scholar 

  36. Simo J.C.: On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153–173 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Govindjee S., Simo J.C.: Mullins effect and the strain amplitude dependence of the storage modulus. Int. J. Solids Struct. 29, 1737–1751 (1992)

    Article  MATH  Google Scholar 

  38. Ogden R.W., Roxburgh D.G.: A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R. Soc. Lond. Ser. A 455, 2861–2877 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Qi H.J., Boyce M.C.: Constitutive model for stretch-induced softening of the stress–stretch behavior of elastomeric materials. J. Mech. Phys. Solids 52, 2187–2205 (2004)

    Article  MATH  Google Scholar 

  40. Dorfmann A., Ogden R.W.: A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int. J. Solids Struct. 41, 1855–1878 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X. Nonlinear electro-thermo-viscoelasticity. Acta Mech 211, 49–59 (2010). https://doi.org/10.1007/s00707-009-0217-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0217-9

Keywords

Navigation