Skip to main content
Log in

Diffuse ultrasonic backscatter in a two-dimensional domain

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The scattering of elastic waves in polycrystalline materials is relevant for ultrasonic materials characterization and nondestructive evaluation (NDE). Diffuse ultrasonic backscatter measurements are used widely to extract the microstructural parameters such as grain size and also to detect flaws in materials. Accurate interpretation of experimental data requires robust scattering models. Line transducers are often used for ultrasonic experiments such that an appropriate model for these two-dimensional problems is needed. Here, a theoretical expression for the temporal diffuse backscatter is derived for such domains under a single-scattering assumption. The result is given in terms of transducer and microstructural parameters. In addition, the problem is examined in terms of numerical simulations using Voronoi polycrystals that are discretized using finite elements in a plane-strain formulation. The material properties of the individual Voronoi cells are chosen according to appropriate material distributions. Such numerical models also allow scattering theories, including the one discussed here, to be examined for well-controlled microstructures. Example numerical results for materials with varying degrees of scattering that are of common interest are presented. The numerical results are compared with the theory developed with good agreement. These results are anticipated to impact ultrasonic NDE of polycrystalline media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holmes A.K., Challis R.E., Wedlock D.J.: A wide bandwidth study of ultrasound velocity and attenuation in suspensions: comparison of theory with experimental measurements. J. Colloid Interface Sci. 156, 261–268 (1993)

    Article  Google Scholar 

  2. Greenwood M.S., Mai J.L., Good M.S.: Attenuation measurements of ultrasound in a kaolin-water slurry: a linear dependence on frequency. J. Acoust. Soc. Am. 94, 908–916 (1993)

    Article  Google Scholar 

  3. Hovem J.M., Ingram G.D.: Viscous attenuation of sound in saturated sand. J. Acoust. Soc. Am. 66, 1807–1812 (1979)

    Article  Google Scholar 

  4. Sayers C.M., Grenfell R.L.: Ultrasonic propagation through hydrating cements. Ultrasonics 31, 147–153 (1993)

    Article  Google Scholar 

  5. Biot M.: Theory of propagation of elastic waves in a fluid saturated porous solid I and II. J. Acoust. Soc. Am. 28, 168–191 (1956)

    Article  MathSciNet  Google Scholar 

  6. Wu D., Qian Z.W., Shao D.: Sound attenuation in a coarse granular medium. J. Sound Vib. 162, 529–535 (1993)

    Article  Google Scholar 

  7. Courtney R.C., Mayer L.: Acoustic properties of fine grained sediments. J. Acoust. Soc. Am. 93, 3193–3200 (1993)

    Article  Google Scholar 

  8. Goddard J.D.: Nonlinear elasticity and pressure dependent wave speeds in granular media. Proc. R. Soc. Lond. A 430, 105–131 (1990)

    Article  MATH  Google Scholar 

  9. Cook B.D., Arnoult W.J. III: Gaussian–Laguerre/Hermite formulation for the nearfield of an ultrasonic transducer. J. Acoust. Soc. Am. 59, 9–11 (1976)

    Article  Google Scholar 

  10. Gubernatis J.E., Domany E., Krumhansl J.A.: Formal aspects of the theory of the scattering of ultrasound by flaws in elastic materials. J. Appl. Phys. 48, 2804–2811 (1977)

    Article  Google Scholar 

  11. Thompson R.B., Gray T.A.: A model relating ultrasonic scattering measurement through liquid–solid interfaces to unbounded medium scattering amplitudes. J. Acoust. Soc. Am. 74(4), 1279–1290 (1983)

    Article  Google Scholar 

  12. Margetan F.J., Gray T.A., Thompson R.B.: A technique for quantitative measuring microstructurally induced ultrasonic noise. In: Thompson, D.O., Chimenti, D.E.(eds) Review of Progress in Quantitative NDE., vol. 10, pp. 1721–1728. Plenum Press, New York (1991)

    Google Scholar 

  13. Thompson R.B., Margetan F., Haldipur P., Yu L., Li A., Panetta P., Wasan H.: Scattering of elastic waves in simple and complex polycrystals. Wave Motion 45, 655–674 (2008)

    Article  Google Scholar 

  14. Ghoshal G., Turner J.A., Weaver R.L.: Wigner distribution of a transducer beam pattern within a multiple scattering formalism for heterogeneous solids. J. Acoust. Soc. Am. 122, 2009–2021 (2007)

    Article  Google Scholar 

  15. ABAQUS: Superior Finite Element Analysis Solutions. ABAQUS, Pawtucket (2003)

  16. Ghoshal, G.: Numerical simulations of elastic wave scattering in polycrystalline materials. Master’s thesis, University of Nebraska-Lincoln (2003)

  17. Yang L., Ghoshal G., Turner J.A.: Ultrasonic scattering in textured polycrystalline materials, Advanced ultrasonic methods for material and structure inspection. Hermes Science Publishing, UK (2007)

    Google Scholar 

  18. Rogers P.H., Buren A.L.V.: An exact expression for the Lommel diffraction correction integral. J. Acoust. Soc. Am. 55, 724–728 (1974)

    Article  MATH  Google Scholar 

  19. Ruiz M.A., Nagy P.B.: Diffraction correction for precision surface acoustic wave velocity measurements. J. Acoust. Soc. Am. 112, 835–842 (2002)

    Article  Google Scholar 

  20. Frisch U.: Wave propagation in random media. In: Barucha-Reid, A.T.(eds) Probabilistic Methods in Applied Mathematics, vol 1, pp. 75–198. Academic, New York (1968)

    Google Scholar 

  21. Achenbach J.D.: Wave Propagation in Elastic Solids. Elsevier, New York (1984)

    MATH  Google Scholar 

  22. Weaver R.L.: Diffusivity of ultrasound in polycrystals. J. Mech. Phys. Solids 38(1), 55–86 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schmerr L.W.: A multigaussian ultrasonic beam model for high performance simulation on a personal computer. Mater. Eval. 58, 882–888 (2000)

    Google Scholar 

  24. Thompson R.B., Gray T.A., Rose J.H., Kogan V.G., Lopes E.F.: The radiation of elliptical and bicylindrically focused piston transducers. J. Acoust. Soc. Am. 82, 1818–1828 (1987)

    Article  Google Scholar 

  25. Thompson R.B., Lopes E.F.: The effects of focusing and refraction on Gaussian ultrasonic beams. J. Nondestruct. Eval. 4, 107–123 (1984)

    Article  Google Scholar 

  26. Ghoshal, G., Turner, J.A.: Numerical model of longitudinal wave scattering in polycrystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2009, to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Turner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghoshal, G., Turner, J.A. Diffuse ultrasonic backscatter in a two-dimensional domain. Acta Mech 205, 35–49 (2009). https://doi.org/10.1007/s00707-009-0175-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0175-2

Keywords

Navigation