Skip to main content
Log in

Effective thermal properties of viscoelastic composites having field-dependent constituent properties

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This study introduces a micromechanical model for predicting effective thermal properties (linear coefficient of thermal expansion and thermal conductivity) of viscoelastic composites having solid spherical particle reinforcements. A representative volume element (RVE) of the composites is modeled by a single particle embedded in the cubic matrix. Periodic boundary conditions are imposed to the RVE. The micromechanical model consists of four particle and matrix subcells. Micromechanical relations are formulated in terms of incremental average field quantities, i.e., stress, strain, heat flux and temperature gradient, in the subcells. Perfect bonds are assumed along the subcell’s interfaces. Stress and temperature-dependent viscoelastic constitutive models are used for the isotropic constituents in the micromechanical model. Thermal properties of the particle and matrix constituents are temperature dependent. The effective coefficient of thermal expansion is derived by satisfying displacement and traction continuity at the interfaces during thermo-viscoelastic deformations. This formulation leads to an effective time–temperature–stress-dependent coefficient of thermal expansion. The effective thermal conductivity is formulated by imposing heat flux and temperature continuity at the subcells’ interfaces. The effective thermal properties obtained from the micromechanical model are compared with analytical solutions and experimental data available in the literature. Finally, parametric studies are also performed to investigate the effects of nonlinear thermal and mechanical properties of each constituent on the overall thermal properties of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ABAQUS, Hibbitt, Karlsson and Sorensen Inc., 2005, User’s Manual, version, 6.5

  2. Aboudi J.: Micromechanical characterization of the non-linear viscoelastic behavior of resin matrix composites. Compos. Sci. Technol. 38, 371–386 (1990)

    Article  Google Scholar 

  3. Aboudi J.: Micromechanically established constitutive equations for multiphase materials with viscoelastic-viscoplastic phases. Mech. Time-depend. Mat. 9, 121–145 (2005)

    Article  Google Scholar 

  4. Agri Y., Uno T.: Thermal conductivity of polymer filled with carbon materials: effect of conductive particle chains on thermal conductivity. J. Appl. Polym. Sci. 30, 2225–2235 (1985)

    Article  Google Scholar 

  5. Agri Y., Uno T.: Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 32, 5705–5712 (1986)

    Article  Google Scholar 

  6. Baschirow A.B., Selenew J.W.: Thermal conductivity of composites. Plaste Kaut 23, 656 (1976)

    Google Scholar 

  7. Benvensite Y.: On the effective thermal conductivity of multiphase composites. J. Appl. Math. Phys. 37, 696–713 (1986)

    Article  Google Scholar 

  8. Brinson L.C., Knauss W.G.: Thermo-rheologically complex behavior of multi-phase viscoelastic materials. J. Mech. Phys. Solids 39, 859–880 (1991)

    Article  Google Scholar 

  9. Brinson L.C., Lin W.S.: Comparisons of micromechanics methods for effective properties of multiphase viscoelastic composites. Compos. Struct. 41, 353–367 (1998)

    Article  Google Scholar 

  10. Cheng S.C., Vachon R.I.: The prediction of the thermal conductivity of two and three phase solid heterogeneous materials. Int. J. Heat Mass Transf. 12, 249–264 (1969)

    Article  Google Scholar 

  11. Cho J., Joshi M.S., Sun C.T.: Effects of inclusion size of mechanical properties of polymeric composites with micro and nano particles. Compos. Sci. Technol. 66, 1941–1952 (2006)

    Article  Google Scholar 

  12. Christensen R.M.: A critical evaluation for a class of micromechanics models. J. Mech. Phys. Solids 38, 379–404 (1990)

    Article  Google Scholar 

  13. Fahmy A.A., Ragai A.N.: Thermal expansion behavior of two phase solids. J. Appl. Phys. 41, 5108–5111 (1970)

    Article  Google Scholar 

  14. Fisher F.T., Brinson L.C.: Viscoelastic interphases in polymer-matrix composites: theoretical models and finite element analysis. Compos. Sci. Technol. 61, 731–748 (2001)

    Article  Google Scholar 

  15. Feltham S.J., Yates B., Martin R.J.: The thermal expansion of particulate-reinforced composites. J. Mater. Sci. 17, 2309–2323 (1982)

    Article  Google Scholar 

  16. Haj-Ali R.M., Muliana A.H.: Micromechanical models for the nonlinear viscoelastic behavior of pultruded composite materials. Int. J. Solids Struct. 40, 1037–1057 (2003)

    Article  MATH  Google Scholar 

  17. Haj-Ali R.M., Muliana A.H.: A multi-scale constitutive framework for the nonlinear analysis of laminated composite materials and structures. Int. J. Solids Struct. 41, 3461–3490 (2004)

    Article  MATH  Google Scholar 

  18. Hartwig G., Wuchner F.: Low temperature mechanical testing machine. Rev. Sci. Instrum. 46, 481–485 (1975)

    Article  Google Scholar 

  19. Hashin Z., Shtrikman S.: A variational approach to the theory of the elastic behavior of polycrystals. J. Mech. Phys. Solids. 10, 343–352 (1962)

    Article  MathSciNet  Google Scholar 

  20. Hill R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Lond. A65, 349–354 (1952)

    Google Scholar 

  21. Hsieh C.L., Tuan W.H.: Elastic and thermal expansion behavior of two-phase composites. Mater. Sci. Eng. A425, 349–360 (2006)

    Google Scholar 

  22. Kerner E.H.: Elastic and thermoelastic properties of composite media. Proc. Phys. Soc. Lond. B69, 808 (1956)

    Google Scholar 

  23. Lai J., Bakker A.: An integral constitutive equation for nonlinear plasto-viscoelastic behavior of high-density polyethylene. Polym. Eng. Sci. 35, 1339–1347 (1995)

    Article  Google Scholar 

  24. Lai J., Bakker A.: 3-D schapery representation for nonlinear viscoelasticity and finite element implementation. Comput. Mech. 18, 182–191 (1996)

    Article  MATH  Google Scholar 

  25. Levin V.M.: On the coefficients of thermal expansion of hetrerogeneous materials. Mech. Solids 2, 58–61 (1967)

    Google Scholar 

  26. Lewis T., Nielsen L.: Dynamic mechanical properties of particulate-filled polymers. J. Appl. Polym. Sci. 14, 1449 (1970)

    Article  Google Scholar 

  27. Li J., Weng G.J.: Stress–strain relations of a viscoelastic composite reinforced with elliptic cylinders. J. Thermoplast. Composite Mater. 10, 19–30 (1997)

    Google Scholar 

  28. Marias C., Villoutreix G.: Analysis and modeling of the creep behavior of the thermostable PMR-15 polyimide. J. Appl. Polym. Sci. 69, 1983–1991 (1998)

    Article  Google Scholar 

  29. Maxwell, J.C.: A Treatise on Electricity and Magnetism, 3rd edn, Chap. 9. Dover, New York (1954)

  30. Mori T., Tanaka K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta. Metall. 21, 571 (1973)

    Article  Google Scholar 

  31. Muliana A.H., Haj-Ali R.M.: Nested nonlinear viscoelastic and micromechanical models for the analysis of pultruded composite structures. Mech. Mater. (MOM) J. 36, 1087–1110 (2004)

    Article  Google Scholar 

  32. Muliana A.H., Nair A., Khan K.A., Wagner S.: Characterization of thermo-mechanical viscoelastic and long-term behaviors of multi-layered composite materials. Compos. Sci. Tech. 66, 2907–2924 (2006)

    Article  Google Scholar 

  33. Muliana A.H., Khan K.A.: A time-integration algorithm for thermo-rheologically complex polymers. Comput. Mater. Sci. 41, 576–588 (2008)

    Article  Google Scholar 

  34. Muliana A.H., Kim J.S.: A concurrent micromechanical model for nonlinear viscoelastic behaviors of particle reinforced composites. Int. J. Solids Struct. 44, 6891–6913 (2007)

    Article  MATH  Google Scholar 

  35. Muliana, A.H., Sawant, S.A.: Responses of viscoelastic polymer composites with temperature and time dependent constituents. Acta Mech. (2008). doi:10.1007/s00707-008-0052-4

  36. Nemat-Nasser S., Hori M.: Micromechanics: Overall Properties of Heterogeneous Materials, 2nd edn. Elsevier, Amsterdam (1999)

    Google Scholar 

  37. Odegard G., Kumosa M.: Elastic-plastic and failure properties of a unidirectional graphite/PMR-15 composites at room and elevated temperature. Compos. Sci. Tech. 60, 2979–2988 (2000)

    Article  Google Scholar 

  38. Reuss A., Agnew Z.: Calculation of flow limits of mixed crystals on the basis of plasticity of single crystal. Z. Angew. Math. Mech. 9, 49–58 (1929)

    Article  MATH  Google Scholar 

  39. Rosen B.W., Hashin Z.: Effective thermal expansion coefficients and specific heats of composite materials. Int. J. Eng. Sci. 8, 157–173 (1970)

    Article  Google Scholar 

  40. Rupnowski P., Gentz M., Kumosa M.: Mechanical response of a unidirectional graphite fiber/polyimide composite as a function of temperature. Compos. Sci. Tech. 66, 1045–1055 (2006)

    Article  Google Scholar 

  41. Schapery R.A.: Thermal expansion coefficients of composite materials based on energy principles. J. Compos. Mater. 2, 380 (1968)

    Article  Google Scholar 

  42. Schapery R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9, 295–310 (1969)

    Article  Google Scholar 

  43. Sideridis E., Kytopoulos V.N., Kyriazi E., Bourkas G.: Determination of thermal expansion coefficient of particulate composites by the use of a triphase model. Compos. Sci. Technol. 65, 909–919 (2005)

    Article  Google Scholar 

  44. Simmons G., Wang H.: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, pp. 178–182. MIT Press, Cambridge (1971)

    Google Scholar 

  45. Stauffer D.: Introduction to Percolation Theory. Taylor & Francis, London (1985)

    MATH  Google Scholar 

  46. Sugawara A., Yoshizawa Y.: An experimental investigation on the thermal conductivity of consolidated porous materials. J. Appl. Phys. 33, 3135 (1962)

    Article  Google Scholar 

  47. Tavman I.H.: Effective thermal conductivity of isotropic polymer composites. Int. Comm. Heat Mass Transf. 25, 723–732 (1998)

    Article  Google Scholar 

  48. Torquato S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)

    MATH  Google Scholar 

  49. Touloukian Y.S., Kirby R.K., Taylor R.E., Lee T.Y.R.: Thermophysical properties of matter: thermal expansion. Nonmet. Solids 13, 350 (1977)

    Google Scholar 

  50. Tseng K.K.: A statistical micromechanics-based multi-scale framework for effective thermomechanical behaviours of particle reinforced composites. Int. J. Solids Struct. 41, 295–304 (2004)

    Article  MATH  Google Scholar 

  51. Tummala R.R., Friedberg A.L.: Thermal expansion of composites as affected by the matrix. J. Am. Ceram. Soc. 53, 376 (1970)

    Article  Google Scholar 

  52. Turner P.S.: Thermal expansion stresses in reinforced plastics. J. Res. NBS 37, 239 (1946)

    Google Scholar 

  53. Verma L.S., Shrotriya A.K., Singh R., Chaudhary D.R.: Thermal conduction in two phase materials with spherical and non spherical inclusions. J. Appl. Phys. D 24, 1729–1737 (1991)

    Article  Google Scholar 

  54. Voigt W.: Lehrbuch der Kristallphysik. BG Teubner, Leipzig (1910)

    Google Scholar 

  55. Wakashima K., Otsuka M., Umekawa S.: Thermal expansion of heterogeneous solids containing aligned ellipsoidal inclusions. J. Compos. Mater. 8, 391–404 (1974)

    Article  Google Scholar 

  56. Yin H.M., Paulino G.H., Buttlar W.G., Sun L.Z.: Effective thermal conductivity of two-phase functionally graded particulate composites. J. Appl. Phys. 98, 063704 (2005)

    Article  Google Scholar 

  57. Zhang H., Ge X., Ye H.: Effectiveness of the heat conduction reinforcement of particle filled composites. Model. Simul. Mater. Sci. Eng. 13, 401–412 (2005)

    Article  Google Scholar 

  58. Zhou H., Zhang S., Yang M.: The effect of heat-transfer passages on the effective thermal conductivity of high filler loading composite materials. Compos. Sci. Technol. 67, 1035–1040 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia H. Muliana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, K.A., Muliana, A.H. Effective thermal properties of viscoelastic composites having field-dependent constituent properties. Acta Mech 209, 153–178 (2010). https://doi.org/10.1007/s00707-009-0171-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0171-6

Keywords

Navigation