Acta Mechanica

, Volume 205, Issue 1–4, pp 77–84 | Cite as

Effect of fiber orientation on the non-affine deformation of random fiber networks



The study of fiber networks is essential in understanding the mechanical properties of many polymeric and biological materials. These systems deform non-affinely, i.e. the local deformation is different than the applied far-field. The degree of non-affinity increases with decreasing scale of observation. Here, we show that this relationship is a power law with a scaling exponent independent of the type of applied load. Preferential fiber orientation influences non-affinity in a significant way: this parameter generally increases upon increasing orientation. However, some components of non-affinity, such as that associated with the normal strain in the direction of the preferential fiber orientation, decrease. In random networks, the nature of the far-field has little influence on the level of non-affinity. This is not the case in oriented networks.


Probability Distribution Function Random Network Segment Length Uniaxial Strain Oriented Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Janmey P.A.: Mechanical properties of cytoskeletal polymers. Curr. Opin. Cell Biol. 4, 4–11 (1991)CrossRefGoogle Scholar
  2. 2.
    Chandran P.L., Barocas V.H.: Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior. J. Biomech. Eng. 128, 259–270 (2006)CrossRefGoogle Scholar
  3. 3.
    Wang C.W., Cheng X., Sastry A.M., Choi S.B.: Investigation of failure processes in porous battery substrates. Part I. Experimental findings. J. Eng. Mater. Technol. 121, 503–513 (1999)CrossRefGoogle Scholar
  4. 4.
    Alava M., Niskanen K.: The physics of paper. Rep. Prog. Phys. 69, 669–723 (2006)CrossRefGoogle Scholar
  5. 5.
    Ostoja-Starzewski M., Stahl D.C.: Random fiber networks and special elastic orthotropy of paper. J. Elast. 60, 131–149 (2000)MATHCrossRefGoogle Scholar
  6. 6.
    Kroy K., Frey E.: Force–extension relation and plateau modulus for wormlike chains. Phys. Rev. Lett. 77, 306–39 (1996)CrossRefGoogle Scholar
  7. 7.
    Wu X.F., Dzenis Y.A.: Elasticity of planar fiber networks. J. Appl. Phys. 98, 093501 (2005)CrossRefGoogle Scholar
  8. 8.
    Narter M.A., Barta S.K., Buchanan D.R.: Micromechanics of three-dimensional fiberwebs: constitutive equations. Proc. R. Soc. A 455, 3543–3563 (1998)CrossRefGoogle Scholar
  9. 9.
    Head D.A., Levine A.J., MacKintosh F.C.: Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Phys. Rev. E 68, 061907 (2003)CrossRefGoogle Scholar
  10. 10.
    Wilhelm J., Frey E.: Elasticity of stiff polymer networks. Phys. Rev. Lett. 91, 108103 (2003)CrossRefGoogle Scholar
  11. 11.
    Onck P.R., Koeman T., van Dillen T., vand der Giessen E.: Alternative explanation of stiffening in cross-linked semiflexible networks. Phys. Rev. Lett. 95, 178102 (2005)CrossRefGoogle Scholar
  12. 12.
    Hatami-Marbini H., Picu R.C.: Scaling of nonaffine deformation in random semiflexible fiber networks. Phys. Rev. E 77, 062103 (2008)CrossRefGoogle Scholar
  13. 13.
    Heussinger C., Frey E.: Stiff polymers, foams, and fiber networks. Phys. Rev. Lett. 96, 017802 (2006)CrossRefGoogle Scholar
  14. 14.
    DiDonna B.A., Lubensky T.C.: Nonaffine correlations in random elastic media. Phys. Rev. E 72, 066619 (2005)CrossRefGoogle Scholar
  15. 15.
    Langer S.A., Liu A.J.: Nonaffine correlations in random elastic media. J. Phys. Chem. B 101, 8667–8671 (1997)CrossRefGoogle Scholar
  16. 16.
    Head D.A., MacKintosh F.C., Levine A.J.: Nonuniversality of elastic exponents in random bond-bending networks. Phys. Rev. E 68, 025101 (2003)CrossRefGoogle Scholar
  17. 17.
    Leonforte F., Tanguy A., Wittmer J.P., Barrat J.L.: Continuum limit of amorphous elastic bodies. II. Linear response to a point source force. Phys. Rev. B 70, 014203 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Mechanical Aerospace and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations