Skip to main content
Log in

Extremum and variational principles for elastic and inelastic media with fractal geometries

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper further continues the recently begun extension of continuum mechanics and thermodynamics to fractal porous media which are specified by a mass (or spatial) fractal dimension D, a surface fractal dimension d, and a resolution lengthscale R. The focus is on pre-fractal media (i.e., those with lower and upper cut-offs) through a theory based on dimensional regularization, in which D is also the order of fractional integrals employed to state global balance laws. In effect, the global forms of governing equations may be cast in forms involving conventional (integer-order) integrals, while the local forms are expressed through partial differential equations with derivatives of integer order but containing coefficients involving D, d and R. Here we first generalize the principles of virtual work, virtual displacement and virtual stresses, which in turn allow us to extend the minimum energy theorems of elasticity theory. Next, we generalize the extremum principles of elasto-plastic and rigid-plastic bodies. In all the cases, the derived relations depend explicitly on D, d and R, and, upon setting D = 3 and d = 2, they reduce to conventional forms of governing equations for continuous media with Euclidean geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Markov, K., Preziosi, L. (eds.): Heterogeneous Media: Micromechanics, Modeling Methods and Simulation. Birkhäuser, Basel (2000)

    MATH  Google Scholar 

  2. Ostoja-Starzewski M. (2008). Microstructural Randomness and Scaling in Mechanics of Materials. Chapman & Hall/CRC Press, Boca Raton

    MATH  Google Scholar 

  3. Mandelbrot B. (1982). The Fractal Geometry of Nature. W.H. Freeman & Co, San Francisco

    MATH  Google Scholar 

  4. Barnsley M.F. (1993). Fractals Everywhere. Morgan Kaufmann, San Francisco

    MATH  Google Scholar 

  5. Avnir D., Biham O., Lidar D. and Malcai O. (1998). Is the geometry of nature fractal?. Science 279: 39–40

    Article  Google Scholar 

  6. Mandelbrot B., Pfeiffer P., Avnir D, Biham O., Lidar D. and Malcai O. (1998). Is nature fractal?. Science 279: 783

    Article  Google Scholar 

  7. Feder, J.: Fractals (Physics of Solids and Liquids), 783–40 Springer, Berlin (2007)

  8. Kigami J. (2002). Analysis on Fractals. Cambridge University Press, Cambridge

    Google Scholar 

  9. Strichartz R.S. (2006). Differential Equations on Fractals: A Tutorial. Princeton University Press, Princeton

    MATH  Google Scholar 

  10. Tarasov V.E. (2005). Continuous medium model for fractal media. Phys. Lett. A 336: 167–174

    Article  MATH  Google Scholar 

  11. Tarasov V.E. (2005). Fractional hydrodynamic equations for fractal media. Ann. Phys. 318: 286–307

    Article  MathSciNet  MATH  Google Scholar 

  12. Tarasov V.E. (2005). Wave equation for fractal solid string. Mod. Phys. Lett. B 19: 721–728

    Article  MATH  Google Scholar 

  13. Collins J.C. (1984). Renormalization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  14. Ostoja-Starzewski M. (2007). Towards thermomechanics of fractal media. ZAMP 58: 1085–1096

    Article  MathSciNet  MATH  Google Scholar 

  15. Ostoja-Starzewski M. (2007). Towards thermoelasticity of fractal media. J. Therm. Stresses 30: 889–896

    Article  Google Scholar 

  16. Ostoja-Starzewski M. (2008). On turbulence in fractal porous media. ZAMP 59: 1111–1117

    Article  MathSciNet  MATH  Google Scholar 

  17. Ostoja-Starzewski, M.: Continuum mechanics models of fractal porous media: integral relations and extremum principles. J. Mech. Mater. Struct. (2009, in press)

  18. Temam R. and Miranville A. (2005). Mathematical Modeling in Continuum Mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Ostoja-Starzewski, M., Li, J.: Fractal materials, beams and fracture mechanics. ZAMP (2009, in press)

  20. Ziegler H. (1983). An Introduction to Thermomechanics. North-Holland, Amsterdam

    MATH  Google Scholar 

  21. Maugin G.A. (1999). The thermomechanics of nonlinear irreversible behaviors—an introduction. World Scientific, Singapore

    Book  MATH  Google Scholar 

  22. Kachanov L.M. (1971). Foundations of the Theory of Plasticity. North-Holland, Amsterdam

    MATH  Google Scholar 

  23. Ignaczak J. and Ostoja-Starzewski M. (2009). Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ostoja-Starzewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostoja-Starzewski, M. Extremum and variational principles for elastic and inelastic media with fractal geometries. Acta Mech 205, 161–170 (2009). https://doi.org/10.1007/s00707-009-0169-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0169-0

Keywords

Navigation