Skip to main content
Log in

Homogeneous solutions of the electroelasticity equations for piezoceramic layers in R 3

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We present a procedure for the derivation of homogeneous solutions for piezoceramic layers within the framework of electroelasticity. The proposed approach simplifies considerably the Lurié (J Appl Math Mech 6:151–169, 1942) method. Two cases of mechanical boundary-conditions for piezoceramic layers are examined, namely, when the bases are (a) built in, and (b) free from the influence of forces. In both cases, the bases of the layer are assumed to be covered by grounded electrodes. It is shown that in the case of boundary conditions of the first type and for the symmetric, with respect to the mid-surface of the layer, electro-elastic state, the homogeneous solutions do not contain any biharmonic terms. We also calculate the distribution of the characteristic values of the corresponding spectrum problems for every given type of boundary conditions. The derived homogeneous solutions can be used for solving boundary-value problems for piezoceramic cylinders and layers within the framework of electroelasticity. We illustrate our approach through a practical example considering an oblique-symmetric boundary-value problem for layers which weaken due to a side to side elliptic cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lurié A.I.: On the theory of thick plates. J. Appl. Math. Mech. 6, 151–169 (1942)

    Google Scholar 

  2. Voigt W.: Lehrbuch der Krystall-Physik. Teubner, Leipzig (1910)

    Google Scholar 

  3. Berlincourt, D., Kerran, D., Jaffe, H.: Piezoelectric and piezomagnetic materials and their applications in converters. In: Mason, W. (ed.) Physics Acoustics, vol. 1, Murray Hill, New Jersey (1964)

  4. Ilyushin A.A.: Mechanics of a solid medium. Moscow State University Publishers, Moscow (1978)

    Google Scholar 

  5. Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. North-Holland, Amsterdam (1988)

  6. Mason W.P.: Piezoelectric Crystals and their Applications to Ultrasonics. Princeton University Press, Princeton (1950)

    Google Scholar 

  7. Nye J.F.: Physical Properties of Crystals. Claderon press, Oxford (1964)

    Google Scholar 

  8. Nowacki W.: Electromagnetic Effects in Solid Bodies. Mir, Moscow (1986)

    Google Scholar 

  9. Sedov L.I.: Mechanics of Continuous Media, vol. 1–2. Nauka, Moscow (1983)

    Google Scholar 

  10. Ambartsumyan S.A., Bagdasaryan G.E., Belubekyan M.V.: Magnetoelasticity of Thin Shells and Plates. Nauka, Moscow (1977)

    Google Scholar 

  11. Ambartsumyan S.A., Bagdasaryan G.E.: Electroconductive plates and shells in a magnetic field. Nauka, Moscow (1996)

    Google Scholar 

  12. Balakirev M.K., Gilinsky I.A.: Waves in Piezocrystals. Nauka, Novosibirsk (1982)

    Google Scholar 

  13. Bardzokas D.I., Zobnin A.I.: Mathematical Modeling of Physical Processes in Composite Materials of Periodical Structure. Moscow Editors, URSS (2003)

    Google Scholar 

  14. Bardzokas, D.I., Zobnin, A.I., Senik, N.A., Filshtinsky, M.L.: Mathematical Modeling in the Problems of the Mechanics of Coupled Fields, vol. I and II, Moscow Editors, URSS (2005)

  15. Bardzokas D.I., Filshtinsky M.L., Filshtinsky L.A.: Mathematical Methods in Electro-Magneto-Elasticity. Springer, Berlin (2007)

    MATH  Google Scholar 

  16. Bardzokas D.I., Kudryavtsev B.A., Senik N.A.: Wave Propagation in Electromagnetoelastic Media. Moscow Editors, URSS (2003)

    Google Scholar 

  17. Barfoot J.: Introduction into the Physics of Ferroelectric Phenomena. Mir Pub., Moscow (1970)

    Google Scholar 

  18. Berlincourt, D., Crueger, H.A.: Properties of Morgan Electro-Ceramic Ceramics. Tech. Publication, Morgan Electroceramics (2000)

  19. Cady W.G.: Piezoelasticity. McGraw-Hill, New York, London (1946)

    Google Scholar 

  20. Grigoliuk E.I., Filshtinskii L.A.: Regular Piecewise Homogeneous Structures with Defects. Nauka, Moscow (1994)

    Google Scholar 

  21. Grinchenko, V.I. Ulitko, A.F., Shulga, N.A.: Mechanics of Coupled Fields in the Elements of Constructions, vol. 1–5, Guz, A.N. Editor, Naukova Dumka, Kiev (1989)

  22. Parton V.Z., Kudryavtsev B.A.: Electromagnetoelasticity. Gordon-Breach, New-York (1988)

    Google Scholar 

  23. Nowacki J.P.: Static and Dynamic Coupled Fields in Bodies with Piezoeffects or Polarization Gradient. Springer, Berlin (2006)

    MATH  Google Scholar 

  24. Kassab A., Aliabadi M.H.: Coupled Field Problems. WIT Press, Southampton (2001)

    MATH  Google Scholar 

  25. Qin Q.-H.: Fracture Mechanics of Piezoelectric Materials. WIT Press, Southampton (2001)

    Google Scholar 

  26. Nowacki W.: Dynamic Problems of Thermoelasticity. Noordhoff, Warsaw (1975)

    Google Scholar 

  27. Tiersten H.F.: Linear Piezoelectric Plate Vibration. Plenum Press, New York (1968)

    Google Scholar 

  28. Dieulesaint E., Royer D.: Elastic waves in Solids, Application to Signal Processing. Wiley, New York (1980)

    Google Scholar 

  29. Eringen A.C., Maugin G.A.: Electrodynamics of Continua, Foundations and Solid Media, vol. 1. Springer, Berlin (1989)

    Google Scholar 

  30. Kosmodamiansky A.S., Lozkin V.N.: Generalized plane stress state of thin piezoelectric plates. J. Appl. Mech. 11, 45–53 (1975)

    Google Scholar 

  31. Vekovisheva I.A.: A plate problem of the theory of electroelasticity for a piezoelectric plate. J. Appl. Mech. 11, 85–89 (1975)

    Google Scholar 

  32. Kosmadamiansky A.S., Kravchenko A.R., Lozkin V.N.: Influence of point electric change on the boundary of a piezoelectric half-plane weakened by an elliptic opening. News Acad. Scit. Armenian SSR Sect. Mech. 30, 13–20 (1977)

    Google Scholar 

  33. Kudryavtsev B.A., Parton V.Z., Rakitin V.P.: Mechanics of fracture of piezoelectric materials. J. Appl. Math. Mech. 39, 56–59 (1975)

    Google Scholar 

  34. Mindlin R.D.: High frequency vibrations of piezoelectric crystal plates. Int. J. Solids Struct. 8, 895–906 (1972)

    Article  MATH  Google Scholar 

  35. Filshtiskii L.A.: Periodic solutions of the theory of elasticity and electro-elasticity for cylinders in R 3. J. Theor. Appl. Mech. 21, 13–20 (1990)

    Google Scholar 

  36. Lavrentiev V.A., Shabat B.V.: The Methods of the Theory of the Functions of Complex Variables. Nauka, Moscow (1973)

    Google Scholar 

  37. Filshtiskii L.A., Shramko L.V.: Homogeneous solutions for piezoceramic spheres in R 3. J. Phys. Chem. Mech. Mat. 39, 35–40 (2003)

    Google Scholar 

  38. Filshtiskii L.A.: Fundamental Solutions of Electroelasticity Equations for a Piezoceramic Layer in R3. Mech. Comp. Mater. 37, 234–237 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Bardzokas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardzokas, D.I., Filshtinskii, L.A. & Shramko, L.V. Homogeneous solutions of the electroelasticity equations for piezoceramic layers in R 3 . Acta Mech 209, 27–41 (2010). https://doi.org/10.1007/s00707-009-0155-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0155-6

Keywords

Navigation