Skip to main content
Log in

Reduction of thermal stresses by composition optimization of two-dimensional functionally graded materials

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Reduction of the thermal stresses in machine elements that are subjected to severe thermal loadings was achieved by developing two-dimensional functionally graded materials, 2D-FGM. In the current investigation, composition optimization for ZrO2/6061-T6/Ti-6Al-4V 2D-FGM, under a severe thermal loading cycle that consists of heating followed by cooling, was carried out based on the minimization of temperatures and thermal and residual stresses to achieve better reduction of the thermal stresses. From the current investigation it was found that the optimum composition based on the minimum value of the maximum temperature for ZrO2/6061-T6/Ti-6Al-4V 2D-FGM was achieved for m x = 0.1 and m y = 0.1, while the optimum composition based on the minimum value of the maximum normalized equivalent stresses for ZrO2/6061-T6/Ti-6Al-4V 2D-FGM was achieved for m x = 0.1 and m y = 5, where m x and m y are the composition variation parameters in x- and y-directions, respectively. Also, the obtained optimum composition of ZrO2/6061-T6/Ti-6Al-4V 2D-FGM can stand well with the adopted severe thermal loading without any plastic deformation or residual stresses, where the maximum value of the normalized equivalent stresses during the heating stage was 0.8 and the maximum value of the normalized equivalent stresses during the cooling stage was 0.24.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noda, N., Tsuji, T.: Steady thermal stresses in a plate of functionally gradient material. In: FGM Forum Proc. 1st Int. Sym. on Functionally Gradient Materials, Sendai, Japan, pp. 339–344 (1991)

  2. Arai, Y., Kobayashi, K., Tamura, M.: Elastic–plastic thermal stresses analysis for optimum design of FGM. In: FGM Forum Proc. Fourth National Sym. on Functionally Gradient Materials (FGM’91), Kawasaki, Japan, pp. 19–30 (1991)

  3. Tang, X.F., Zhang, L.M., Zhang, Q.J., Yuan, R.Z. et al.: Design and structural control of PSZ-MO functionally gradient materials with thermal Relaxation. In: Holt, I.B. (ed.) Ceramic Transactions: Functionally Gradient Materials, 34, pp. 45–463. American Ceramic Society, Westerville (1993)

  4. Noda N.: Thermal stresses intensity factor for functionally gradient plate with an edge crack. J. Thermal Stresses 20, 373–387 (1997)

    Article  Google Scholar 

  5. Noda N., Nakai S., Tsuji T.: Thermal stresses in functionally graded material of particle-reinforce composite. JSME A 41(2), 178–184 (1998)

    Google Scholar 

  6. Choules B.D., Kokini K.: Architecture of functionally graded ceramic coating against surface thermal fracture. ASME J. Eng. Mater. Technol. 118, 522–528 (1996)

    Article  Google Scholar 

  7. Noda N.: Thermal stresses in functionally graded materials. J. Thermal Stresses 22, 477–512 (1999)

    Article  MathSciNet  Google Scholar 

  8. Steinberg M.A.: Materials for Aerospace, U.S. goals for subsonic, supersonic and hypersonic flight and for space exploration call for alloys and composites notable for strength, light weight and resistance to heat. Sci. Am. 244, 59–64 (1986)

    Google Scholar 

  9. Callister W.D. Jr.: Materials science and engineering an introduction, pp. s347–s351. Wiley, New York (2001) chapter 20. s347–s351

    Google Scholar 

  10. Columbia Accident Investigation Board (2003) Report of Columbia Accident Investigation Board, vol. I. NASA, January 2006

  11. Columbia Accident Investigation Board (2003) In-Flight Options Assessment, vol. II, appendix D.12 (PDF). NASA, January 2006

  12. Clements D.L., Kusuma J., Ang W.T.: A Note on Antiplane Deformations of Inhomogeneous Materials. Int. J. Eng. Sci. 35, 593–601 (1997)

    Article  MATH  Google Scholar 

  13. Dhaliwal R.S., Singh B.M.: On the theory of elasticity of a non-homogeneous medium. J. Elasticity 8, 211–219 (1978)

    Article  MATH  Google Scholar 

  14. Nemat-Alla M., Noda N.: Thermal stress intensity factor for functionally gradient half space with an edge Crack under thermal load. Arch. Appl. Mech. 66(8), 569–580 (1996)

    Article  MATH  Google Scholar 

  15. Nemat-Alla M., Noda N.: Study of an edge crack problem in a semi-infinite functionally graded medium with two dimensionally non-homogenous coefficient of thermal expansion under thermal load. J. Thermal Stresses 19, 863–888 (1996)

    Article  Google Scholar 

  16. Nemat-Alla M., Noda N.: Edge crack problem in a semi-infinite FGM plate with a bi-directional coefficient of thermal expansion under two-dimensional thermal loading. Acta Mech. 144(2–3), 211–229 (2000)

    Article  MATH  Google Scholar 

  17. Nemat-Alla, M., Noda, N., Hassab-Allah, I.: Analysis and investigation of thermal stress intensity factor for edge cracked FGM plates. Bulletin of the Faculty of Engineering, Assiut university, Vol. 29 Part 3(1/2), pp. 89–102, September (2001)

  18. Marin M.: Numerical solution of the Cauchy problem for steady-state heat transfer in two-dimensional functionally graded materials. Int. J. Solids Struct. 42, 4338–4351 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ke L.L., Wang Y.S.: Two-dimensional contact mechanics of functionally graded materials with arbitrary spatial variations of material properties. Int. J. Solids Struct. 43, 5779–5798 (2006)

    Article  MATH  Google Scholar 

  20. Aboudi J., Pindera M., Arnold S.: Thermoelastic theory for the response of materials functionally graded in two directions. Int. J. Solids Struct. 33, 931–966 (1996)

    Article  MATH  Google Scholar 

  21. Aboudi J., Pindera M., Arnold S.: Thermoplasticity theory for bi-directionally functionally graded materials. J. Thermal stresses 19, 809–861 (1996)

    Article  Google Scholar 

  22. Cho J.R., Ha D.Y.: Optimal tailoring of 2D volume-fraction distributions for heat-resisting functionally graded materials using FDM. Comput. Methods Appl. Mech. Eng. 191, 3195–3211 (2002)

    Article  MATH  Google Scholar 

  23. Goupee A.J., Vel S.S.: Two-dimensional optimization of material composition of functionally graded materials using meshless analyses and a genetic algorithm. Comp. Methods Appl. Mech. Eng. 195, 5926–5948 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nemat-Alla M.: Reduction of thermal stresses by developing two-dimensional functionally graded materials. Int. J. Solids Struct. 40, 7339–7356 (2003)

    Article  MATH  Google Scholar 

  25. Wang J., Shaw L.L.: Fabrication of functionally graded materials via inkjet color printing. J. Am. Ceram. Soc. 89(10), 3285–3289 (2006)

    Article  Google Scholar 

  26. Nemat-Alla M., Ahmed K., Hassab-Allah I.: Elastic–plastic investigation on effectiveness of two dimensional functionally graded materials in reduction of thermal stresses. J. Eng. Sci. Univ. 36(3), 689–710 (2008)

    Google Scholar 

  27. Nemat-Alla, M., Ahmed, K., Hassab-Allah, I.: Elastic–plastic analysis of two dimensional functionally graded materials under thermal loading. Int. J. Solids Struct. (accepted for publications) (2009)

  28. Tanigawa Y., Oka N., Akai T., Kawamura R.: One-dimensional transient thermal stress problem for nonhomogeneous hollow circular cylinder and its optimization of material composition for thermal stress relaxation. JASME Ser. A 40, 117–127 (1997)

    Google Scholar 

  29. Guo Y.B., Wen Q., Horstemeyer M.F.: An internal state variable plasticity-based approach to determine dynamic loading history effects on material property in manufacturing processes. Int. J. Mech. Sci. 47, 1423–1441 (2005)

    Article  Google Scholar 

  30. Pettermann, H.E., Weissenbek, E., Suresh, S.: Simulation of Elasto–Plastic Deformations in Functionally Graded Metal-Ceramic Structure: Mean Field and Unit Cell Approaches, FGM 96, Shiota and Miyamoto, Editors, Elsevier Science B. V. pp., 75–80 (1997)

  31. Suresh S., Mortensen A.: Functionally graded materials and metal-ceramic composites: Part 2-thermomechanical behaviour. Int. Mater. Rev. 42, 85–116 (1997)

    Google Scholar 

  32. Giannakopoulos A.E., Suresh S., Finot M., Finot S., Olsson M.: Elastoplatic analysis of thermal cycling layered materials with compositional gradients. Acta Metall. 43, 1335–1354 (1995)

    Article  Google Scholar 

  33. Aboudi A., Pindera M.J., Arnold S.M.: Thermo-Inelastic Response of Functionally Graded Composites. Int. J. Solids Struct. 32, 1675–1710 (1995)

    Article  MATH  Google Scholar 

  34. Tohgo, K., Masunari, A., Yoshida, M.: Two-phase composite model taking into account the matricity of microstructure and its application to functionally graded materials. Composites: Part A (2006) (in press)

  35. Jin Z.-H.: Effect of material nonhomogeneities on the HRR dominance. Mech. Res. Commun. 31, 203–211 (2004)

    Article  MATH  Google Scholar 

  36. Gu Y., Nakamura T., Prchlik L., Sampath S., Wallace J.: Micro-indentation and inverse analysis to characterize elastic-/plastic graded materials. Mater. Sci. Eng. A 345, 223–233 (2003)

    Article  Google Scholar 

  37. Aboudi A., Pindera M.J., Arnold S.M.: Higher-order theory for periodic multiphase materials with inelastic phases. Int. J. Plasticity 19, 805–847 (2003)

    Article  MATH  Google Scholar 

  38. Shim D.J., Paulino G.H., Jr R.H.D.: A boundary layer framework considering material gradation effects. Eng. Fracture Mech. 73, 593–615 (2006)

    Article  Google Scholar 

  39. Jin Z.H. Jr, R.H.D.: Crack growth resistance behavior of a functionally graded material: computational studies. Eng. Fracture Mech. 71, 1651–1672 (2004)

    Google Scholar 

  40. Jin Z.H., Paulino G.H., Jr R.H.D.: Cohesive fracture modeling of elastic-plastic crack growth in functionally graded materials. Eng. Fracture Mech. 70, 1885–1912 (2003)

    Article  Google Scholar 

  41. Tvergaard V.: Theoretical investigation of the effect of plasticity on crack growth along a functionally graded region between dissimilar elastic–plastic solids. Eng. Fracture Mech. 69, 1635–1645 (2002)

    Article  Google Scholar 

  42. Kokini K., Case M.: Initiation of surface edge cracks in functionally graded ceramic thermal barrier coating. ASME J. Mater. Technol. 119, 148–152 (1997)

    Article  Google Scholar 

  43. Li C., Zou Z., Duan Z.: Multiple isoparametric finite element method for nonhomogeneous media. Mech Res Commun. 27(2), 137–142 (2000)

    Article  MATH  Google Scholar 

  44. Bleek O., Munz D., Schaller W., Yang Y.Y.: Effect of a graded interlayer on the stress intensity factor of cracks in a joint under thermal loading. Eng. Fract. Mech. 60(5–6), 615–623 (1998)

    Article  Google Scholar 

  45. Bao G., Wang L.: Multiple cracking in functionally graded ceramic/metal coatings. Int. J Solid Struct. 32(19), 2853–2871 (1995)

    Article  MATH  Google Scholar 

  46. Li H., Lambros J., Cheeseman B.A., Santare M.H.: Experimental investigation of the quasi-static fracture of functionally graded materials. Int. J Solid Struct. 37, 3715–3732 (2000)

    Article  MATH  Google Scholar 

  47. Santare M.H., Lambros J.: Use of graded finite elements to model the behaviour of nonhomogeneous materials. J App. Mech. 67, 819–822 (2000)

    Article  MATH  Google Scholar 

  48. Kim J.-H., Paulino G.H.: Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. ASME J Appl. Mech. 69, 502–514 (2002)

    Article  MATH  Google Scholar 

  49. Rousseau C.E., Tippur H.V.: Compositionally graded materials with cracks normal to the elastic gradient. Acta Mater. 48, 4021–4033 (2000)

    Article  Google Scholar 

  50. Nemat-Alla, M., Ahmed, K.I.: 3-D elastic–plastic finite element analysis of two dimensional functionally graded materials under cyclic thermal loading. In: 7th International Congress on Thermal Stresses, June 4–7, Taipei, pp. 321–324 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Nemat-Alla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemat-Alla, M. Reduction of thermal stresses by composition optimization of two-dimensional functionally graded materials. Acta Mech 208, 147–161 (2009). https://doi.org/10.1007/s00707-008-0136-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0136-1

Keywords

Navigation