Skip to main content
Log in

Effective elastic moduli of three-phase composites with randomly located and interacting spherical particles of distinct properties

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A micromechanical analytical framework is presented to predict effective elastic moduli of three-phase composites containing many randomly dispersed and pairwisely interacting spherical particles. Specifically, the two inhomogeneity phases feature distinct elastic properties. A higher-order structure is proposed based on the probabilistic spatial distribution of spherical particles, the pairwise particle interactions, and the ensemble-volume homogenization method. Two non-equivalent formulations are considered in detail to derive effective elastic moduli with heterogeneous inclusions. As a special case, the effective shear modulus for an incompressible matrix containing randomly dispersed and identical rigid spheres is derived. It is demonstrated that a significant improvement in the singular problem and accuracy is achieved by employing the proposed methodology. Comparisons among our theoretical predictions, available experimental data, and other analytical predictions are rendered. Moreover, numerical examples are implemented to illustrate the potential of the present method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hashin Z., Shtrikman S.: On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 10, 335–342 (1962)

    Article  MathSciNet  Google Scholar 

  2. Hashin Z., Shtrikman S.: A variational approach to the theory of the elastic behavior of polycrystals. J. Mech. Phys. Solids 10, 343–352 (1962)

    Article  MathSciNet  Google Scholar 

  3. Hashin Z., Shtrikman S.: A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  4. Torquato S., Lado F.: Effective properties of two-phase disordered composite media: II. Evaluation of bounds on the conductivity and bulk modulus of dispersions of impenetrable spheres. Phys. Rev. B 33, 6428–6434 (1986)

    Google Scholar 

  5. Mori T., Tanaka K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  6. Sen A.K., Lado F., Torquato S.: Bulk properties of composite media: II. Evaluation of bounds on the shear moduli of suspensions of impenetrable spheres. J. Appl. Phys. 62, 4135–4141 (1987)

    Article  Google Scholar 

  7. Nemat-Nasser S., Hori, M.: Micromechanics: overall properties of heterogeneous materials, 2nd edn. North-Holland, Amsterdam (1999)

    Google Scholar 

  8. Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problem. Proc. R. Soc. A241, 376–396 (1957)

    MathSciNet  Google Scholar 

  9. Batchelor G.K., Green J.T.: The determination of the bulk stress in a suspension of spherical particles to order c 2. J. Fluid Mech. 56, 401–427 (1972)

    Article  MATH  Google Scholar 

  10. Silnutzer, N.: Effective Constants of Statistically Homogeneous Materials. Ph.D. Thesis, University of Pennsylvania (1972)

  11. Milton G.W., Phan-Thien N.: New bounds on effective elastic moduli of two-component materials. Proc. R. Soc. A380, 305–331 (1982)

    Google Scholar 

  12. Chen H.S., Acrivos A.: The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrations. Int. J. Solids Struct. 14, 349–364 (1978)

    Article  MATH  Google Scholar 

  13. Ju J.W., Chen T.M.: Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities. Acta Mech. 103, 103–121 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ju J.W., Chen T.M.: Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities. Acta Mech. 103, 123–144 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Willis J.R.: Bounds and self-consistent estimates for the overall properties of anisotropic composites. J. Mech. Phys. Solids 25, 185–202 (1977)

    Article  MATH  Google Scholar 

  16. Ju J.W., Chen T.M.: Micromechanics and effective elastoplastic behavior of two-phase metal matrix composites. J. Eng. Mater. Technol. ASME 116, 310–318 (1994)

    Article  Google Scholar 

  17. Ju J.W., Tseng K.H.: Effective elastoplastic behavior of two-phase ductile matrix composites: A micromechanical framework. Int. J. Solids Struct. 33(29), 4267–4291 (1996)

    Article  MATH  Google Scholar 

  18. Ju J.W., Tseng K.H.: Effective elastoplastic algorithms for two-phase ductile matrix composites. J. Eng. Mech. ASCE 123(3), 260–266 (1997)

    Article  Google Scholar 

  19. Ju J.W., Sun L.Z.: Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part I: micromechanics-based formulation. Int. J. Solids Struct. 38(2), 183–201 (2001)

    Article  MATH  Google Scholar 

  20. Sun L.Z., Ju J.W.: Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part II: applications. Int. J. Solids Struct. 38(2), 203–225 (2001)

    Article  Google Scholar 

  21. Ju J.W., Zhang X.D.: Micromechanics and effective transverse elastic moduli of composites with randomly located aligned circular fibers. Int. J. Solids Struct. 35(9–10), 941–960 (1998)

    Article  MATH  Google Scholar 

  22. Ju J.W., Zhang X.D.: Effective elastoplastic behavior of ductile matrix composites containing randomly located aligned circular fibers. Int. J. Solids Struct. 38(22–23), 4045–4069 (2001)

    Article  MATH  Google Scholar 

  23. Ju J.W., Sun L.Z.: A novel formulation for the exterior-point Eshelby’s tensor of an ellipsoidal inclusion. J. Appl. Mech. ASME 66, 570–574 (1999)

    Google Scholar 

  24. Ju J.W., Lee H.K.: A micromechanical damage model for effective elastoplastic behavior of ductile matrix composites considering evolutionary complete particle debonding. Comput. Meth. Appl. Mech. Eng. 183(3–4), 201–222 (2000)

    Article  MATH  Google Scholar 

  25. Ju J.W., Lee H.K.: A micromechanical damage model for effective elastoplastic behavior of partially debonded ductile matrix composites. Int. J. Solids Struct. 38(36–37), 6307–6332 (2001)

    Article  MATH  Google Scholar 

  26. Sun L.Z., Ju J.W., Liu H.T.: Elastoplastic modeling of metal matrix composites with evolutionary particle debonding. Mech. Mater. 35, 559–569 (2003)

    Article  Google Scholar 

  27. Sun L.Z., Liu H.T., Ju J.W.: Effect of particle cracking on elastoplastic behavior of metal matrix composites. Int. J. Numer. Meth. Eng. 56, 2183–2198 (2003)

    Article  MATH  Google Scholar 

  28. Liu H.T., Sun L.Z., Ju J.W.: An interfacial debonding model for particle-reinforced composites. Int. J. Damage Mech. 13(2), 163–185 (2004)

    Article  Google Scholar 

  29. Sun L.Z., Ju J.W.: Elastoplastic modeling of metal matrix composites containing randomly located and oriented spheroidal particles. J. Appl. Mech. ASME 71, 774–785 (2004)

    Article  MATH  Google Scholar 

  30. Liu H.T., Sun L.Z., Ju J.W.: Elastoplastic modeling of progressive interfacial debonding for particle-reinforced metal matrix composites. Acta Mech. 181(1–2), 1–17 (2006)

    Article  MATH  Google Scholar 

  31. Ju J.W., Ko Y.F., Ruan H.N.: Effective elastoplastic damage mechanics for fiber reinforced composites with evolutionary complete fiber debonding. Int. J. Damage Mech. 15(3), 237–265 (2006)

    Article  Google Scholar 

  32. Lee H.K., Ju J.W.: A three-dimensional stress analysis of a penny-shaped crack interacting with a spherical inclusion. Int. J. Damage Mech. 16(3), 331–359 (2007)

    Article  Google Scholar 

  33. Ju J.W., Oh S.: Investigation of the crack-dislocation interaction effects. Int. J. Damage Mech. 17(3), 223–245 (2008)

    Article  Google Scholar 

  34. Ju J.W., Ko Y.F.: Micromechanical elastoplastic damage modeling for progressive interfacial arc debonding for fiber reinforced composites. Int. J. Damage Mech. 17(4), 307–356 (2008)

    Article  Google Scholar 

  35. Eshelby, J.D.: Elastic inclusions and inhomogeneities. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics. North-Holland, Amsterdam (1961)

  36. Mura T.: Micromechanics of defects in solids, 2nd edn. Kluwer, Dordrecht (1987)

    Google Scholar 

  37. Zhao Y.H., Tandon G.P., Weng G.J.: Elastic moduli for a class of porous materials. Acta Mech. 76, 105–131 (1989)

    Article  MATH  Google Scholar 

  38. Willis J.R., Acton J.R.: The overall elastic moduli of a dilute suspension of spheres. Q. J. Mech. Appl. Math. 29, 163–177 (1976)

    Article  MATH  Google Scholar 

  39. Kim S., Mifflin R.T.: The resistance and mobility functions of two equal spheres in low-Reynolds-number flow. Phys. Fluids 28, 2033–2045 (1985)

    Article  MATH  Google Scholar 

  40. Smith J.C.: Experimental values for the elastic constants of a particulate-filled glassy polymer. J. Res. NBS 80A, 45–49 (1976)

    Google Scholar 

  41. Walsh J.B., Brace W.F., England A.W.: Effect of porosity on compressibility of glass. J. Am. Ceram. Soc. 48, 605–608 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, P.J., Ju, J.W. Effective elastic moduli of three-phase composites with randomly located and interacting spherical particles of distinct properties. Acta Mech 208, 11–26 (2009). https://doi.org/10.1007/s00707-008-0114-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0114-7

Keywords

Navigation