Skip to main content
Log in

The physics of unsteady jet impingement and its heat transfer performance

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The influence of unsteadiness with respect to the heat transfer performance of impinging jets is studied systematically by imposing various shapes and frequencies of unsteadiness. By means of an enhancement coefficient (Nusselt number of the unsteady flow over that for the steady flow) the heat transfer performance is characterized and most efficient types of unsteadiness are identified. From PIV data details of the flow field emerge. These data help to better understand the physics of heat transfer enhancement. Finally it is shown that the influence of unsteadiness can be very different when small obstacles are added to the smooth heat transfer surface, which corresponds to a more realistic situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin H.: Heat and mass transfer between impinging gas jets and solid surface. Adv. Heat Transfer 13, 1–60 (1977)

    Article  Google Scholar 

  2. Jambunathan K., Moss M.A., Button B.L.: A review of heat transfer data for single circular jet impingement. Int. J. Heat Fluid Flow 13(2), 106–115 (1992)

    Article  Google Scholar 

  3. Viskanta R.: Heat transfer to impinging isothermal gas and flame jets. Exp. Thermal Fluid Sci. 6, 111–134 (1993)

    Article  Google Scholar 

  4. Colucci D.W., Viskanta R.: Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet. Exp. Thermal Fluid Sci. 13, 71–80 (1996)

    Article  Google Scholar 

  5. Royne A., Dey C.J.: Effect of nozzle geometry on pressure drop and heat transfer in submerged jet arrays. Int. J. Heat Mass Transfer 49, 800–804 (2006)

    Article  Google Scholar 

  6. Lee J., Lee S.-J.: The effect of nozzle aspect ratio on stagnation region heat transfer characteristics of elliptic impinging jet. Int. J. Heat Mass Transfer 43, 555–575 (2000)

    Article  MATH  Google Scholar 

  7. Hoogendoorn C.J.: The effect of turbulence on heat transfer at stagnation point. Int. J. Heat Mass Transfer 20, 1333–1338 (1977)

    Article  Google Scholar 

  8. Kataoka, K.: Impingement heat transfer augmentation due to large scale eddies. In: Proceedings of Ninth International Heat Transfer Conference, vol. 1, pp. 255–273 (1990)

  9. Lee D.H., Greif R.S., Lee J.: Heat transfer measurements using liquid crystal with an elliptic jet impinging upon the flat surface. Int. J. Heat Mass Transfer 37, 967–976 (1994)

    Article  Google Scholar 

  10. Nevins, R.G., Ball, H.D.: Heat transfer between a flat plate and a pulsation impinging jet. National Heat Transfer Conference, Boulder CO, ASME (1961)

  11. Seyed-Yagoobi J.: Enhancement of heat and mass transfer with innovative impinging jets. Drying Technol. 14, 1173–1196 (1997)

    Article  Google Scholar 

  12. Herwig H., Mocikat H., Gürtler T. et al.: Heat transfer due to unsteadily impinging jets. Int. J. Thermal Sci. 43, 733–741 (2004)

    Article  Google Scholar 

  13. Chinnock, P.S., Page, R.H.: Heat transfer enhancement with a self oscillating jet impingement nozzle. In: Proceedings of Tenth International Heat Transfer Conference, vol. 3, pp. 19–24 (1994)

  14. Camci C., Herr F.: Forced convection heat transfer enhancement using a self-oscillating impinging planar Jet. ASME J. Heat Transfer 124, 770–782 (2002)

    Article  Google Scholar 

  15. Liu T., Sullivan J.P.: Heat transfer and flow structure in an excited circular Jet. Int. J. Heat Mass Transfer 39, 3695–3706 (1996)

    Article  Google Scholar 

  16. Chen Y.Y., Yuan Z.X., Ma C.F. et al.: Experimental study of heat transfer of swirling jet impingement with liquid crystal technique. J. Eng. Thermophys. 24, 646–648 (2003)

    Google Scholar 

  17. Göppert S., Gürtler T., Mocikat H., Herwig H.: Heat transfer under a precessing jet: effects of unsteady jet impingement. Int. J. Heat Mass Transfer 47, 2795–2806 (2004)

    Article  Google Scholar 

  18. Azevedo L.F.A. et al.: Pulsed air jet impingement heat transfer. Exp. Thermal Fluid Sci. 8, 206–213 (1994)

    Article  Google Scholar 

  19. Mladin E.E., Zumbrunnen D.A.: Local convective heat transfer to submerged pulsating jets. Int. J. Heat Mass Transfer 40, 3305–3321 (1997)

    Article  Google Scholar 

  20. Haneda Y., Tsuchiya Y., Nakabe K. et al.: Enhancement of impinging jet heat transfer by making use of mechano-fluid interactive flow oscillation. Int. J. Heat Fluid Flow 19, 115–124 (1998)

    Article  Google Scholar 

  21. Zumbrunnen D.A., Aziz M.: Convective heat transfer enhancement due to intermittency in an impinging jet. J. Heat Transfer 115, 91–98 (1993)

    Article  Google Scholar 

  22. Kataoka K.: Unsteady aspects of large-scale coherent structures and impingement heat transfer in round air jets with and without controlled excitation. Int. J. Eng. Fluid Mech. 1, 365–382 (1988)

    Google Scholar 

  23. Zumbrunnen D.A., Mladin E.C.: Dependence of heat transfer to a pulsating stagnation flow on pulse characteristics. J. Thermophys. Heat Transfer 9, 181–191 (1995)

    Article  Google Scholar 

  24. Mladin E.C., Padet J.: Unsteady planar stagnation flow on a heated plate. Int. J. Thermal Sci. 40, 638–648 (2001)

    Article  Google Scholar 

  25. Durst F., Heim U., Kullik B., Kullik G.: Mass flow rate control system for time-dependent laminar and turbulent flow investigations. Meas. Sci. Technol. 14, 893–902 (2003)

    Article  Google Scholar 

  26. Middelberg, G., Herwig, H.: Heat Transfer under unsteadily impinging jets: a systematic investigation. In: Proceedings of IHTC-13, Sydney (2006)

  27. Schneider, W.: Private communication (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Herwig.

Additional information

Dedicated to Professor Wilhelm Schneider on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herwig, H., Middelberg, G. The physics of unsteady jet impingement and its heat transfer performance. Acta Mech 201, 171–184 (2008). https://doi.org/10.1007/s00707-008-0080-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0080-0

Keywords

Navigation