Skip to main content
Log in

On an analogy to the area–velocity relation of gasdynamics in slender vortices

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Inviscid compressible flow in a slender longitudinal vortex with the axis parallel to the main flow direction is discussed. The Euler equations for steady, axially symmetric flow are simplified for the neighbourhood of the axis of the vortex. The resulting relations, expressing the angular velocity in terms of the axial mass flow, when recast and integrated, represent an analogy to the area–velocity and the area-Mach number relation of one-dimensional gasdynamics. By restricting the analysis to the flow in a Rankine vortex with constant stagnation enthalpy, the static pressure on the axis can be related to the free-stream pressure far away from the axis and the maximum value of the azimuthal velocity. The influence of a radial wake-like distribution of the axial velocity component on the axial pressure is discussed. Its dependence on variable external boundary conditions is given. A condition is formulated, which has to be satisfied for the formation of a free stagnation point on the axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leweke, Th., Williamson, C.H.K.: Long-wavelength instability and reconnection of a vortex pair. In: Krause, E., Gersten K. (eds.) Dynamics of Slender Vortices, IUTAM Symposium on Dynamics of Slender Vortices, 31 August–3 September 1997, Proceedings, pp. 225–234. Kluwer, Dordrecht (1998)

  2. Huppertz, G.: Vortex/engine-jet interaction in the near wake of a swept wing. In: GAMM Annual Meeting, 27–31 March, Book of Abstracts, p. 564 (2006)

  3. Hörnschemeyer, R., Kauertz, S., Haverkamp, S., Neuwerth, G.: Tip vortex wake destabilization with and without winglets. In: GAMM Annual Meeting, 27–31 March, Book of Abstracts, p. 565 (2006)

  4. Krause, E., Nockemann, M., Abstiens, R.: Influence of winglets on the near-field of tip vortices. In: GAMM Annual Meeting, 27–31 March, Book of Abstracts, p. 564 (2006)

  5. Naitoh K., Kuwahara K., Jeschke M., Krause E.: Numerical simulation of the small vortices in the intake and compression processes of an engine. JSME Int. J. Ser. II 35, 549 (1992)

    Google Scholar 

  6. Klöker, J.: Numerische Simulation einer dreidimensionalen, kompressiblen, reibungsbehafteten Strömung im Zylinder eines Modellmotors, Dissertation, RWTH Aachen (1992)

  7. Abdelfattah, A.: Numerische Simulation von Strömungen in 2- und 4-Ventil-Motoren, Dissertation, RWTH Aachen (1998)

  8. Ortmann, R.: Untersuchung der Strömung im Zylinder eines 4-Ventil-Serienmotors mit der Particle-Image-Velocimetry, Dissertation, RWTH Aachen (1997)

  9. Abdelfattah, A., Durst, B., Huebner, W., Kern, W.: Fuel stratification in automotive engines with vortical flow structures: an engineering approach with numerical and experimental methods. In: Bathe, K.J. (ed.) Computational Fluid and Solid Mechanics 2003, Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, pp. 810–814. 17–20 June 2003 (2003)

  10. Abdelfattah, A.: Private Communication (2006)

  11. Krause; E.: Breakdown of compressible slender vortices. In: Krause, E., Resch, M., Shokina, N. (eds.) Notes on Numerical Fluid Mechanics and Multidisciplinary Design, The 2nd Russian–German Advanced Research Workshop, Stuttgart, Germany, 14–16 March 2005, Vol. 91, pp. 1–12 (2006)

  12. Billant, P., Chomaz, J. M., Delbende, I., Huerre, P., Loiseleux, T., Olendraru, C., Rossi, M., Sellier, A.: Instabilities and vortex breakdown in swirling jets and wakes. In: Krause, E., Gersten, K. (eds.) Dynamics of Slender Vortices, IUTAM Symposium on Dynamics of Slender Vortices, 31 August–3 September 1997, Proceedings, pp. 267–286. Kluwer, Dordrecht (1998)

  13. Krause, E.: Shock induced vortex breakdown. In: Proceedings of International Conference on the Methods of Astrophysical Research, 9–16 July 2000, Part II, pp. 109–114. Publishing House of Siberian Branch of Russian Academy of Sciences, Novosibirsk (2000)

  14. Krause E.: Axial flow in slender vortices. J. Eng. Thermophys. 11, 229–242 (2002)

    Google Scholar 

  15. Kandil, O.A., Kandil, H.A., Liu, C.H.: Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown. In: 29th Aerospace Sciences Meeting, 7–10 January, AIAA Paper 91-0752 (1991)

  16. Erlebacher, G., Hussaini, M. Y., Shu, C.-W.: Interaction of a Shock with a Longitudinal Vortex, ICASE Report, No. 96–31 (1996)

  17. Krause E., Thomer O., Schröder W.: Strong shock–vortex interaction—a numerical study. Comput. Fluid Dyn. J. 33, 266–278 (2003)

    Google Scholar 

  18. Krause E.: Breakdown of slender vortices: the state of the art. In: Blackmore, D., Krause, E., Tung, C. (eds) Vortex Dominated Flows., pp. 135–156. World Scientific, New Jersey (2005)

    Google Scholar 

  19. Ruith M.R., Chen P., Meiburg E., Maxworthy T.: Three-dimensional vortex breakdown in swirling jets and wakes: direct numeical simulation. J. Fluid Mech. 486, 331–378 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egon Krause.

Additional information

Dedicated to Professor Wilhelm Schneider on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krause, E. On an analogy to the area–velocity relation of gasdynamics in slender vortices. Acta Mech 201, 23–30 (2008). https://doi.org/10.1007/s00707-008-0069-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0069-8

Keywords

Navigation