Skip to main content
Log in

Stability of a twisted and compressed clamped rod

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We consider the problem of determining the stability boundary of an elastic rod clamped at both ends and loaded by a compressive force and a couple. The constitutive equations of the rod are such that both shear of the cross section and compressibility of the rod axis are considered. The stability boundary is given by the bifurcation points of a system of eight nonlinear first-order differential equations, obtained by using the first integrals. Depending on the parameter values the type of bifurcation is determined. The post-critical shape of the rod is obtained by the numerical integration of a system of 12 nonlinear first-order differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Austria)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Timoshenko S.P., Gere J.M.: Theory of Elastic Stability, 2nd edn. McGraw-Hill, New York (1961)

    Google Scholar 

  2. Biezeno C.B., Grammel R.: Technische Dynamik. Springer, Berlin (1953)

    MATH  Google Scholar 

  3. Beck M.: Knickung gerader Stäbe durch Druck und konservative Torsion. Ing. Archiv. 23, 231–255 (1955)

    Article  MATH  Google Scholar 

  4. Kovari K.: Räumliche Verzweingungsprobleme des dünnen elastischen Stabes mit endlichen Verformungen. Ing. Archiv. 37, 393–416 (1969)

    Article  MATH  Google Scholar 

  5. Antman S.S., Kenney C.S.: Large buckled states of nonlinearly elastic rods under torsion thrust and gravity. Arch. Ration. Mech. Anal. 76, 289–338 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  6. Béda B.P., Steindl A., Troger H.: Postbuckling of a twisted prismatic rod under terminal thrust. Dyn. Stab. Syst. 7, 219–232 (1992)

    MATH  Google Scholar 

  7. Coleman B.D., Dill E.H., Lembo M., Lu Z., Tobias I.: On the dynamics of rods in the theory of Kirchhoff Clebsch. Arch. Ration. Mech. Anal. 121, 339–359 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. van der Heijden G.H.M., Thompson J.M.T.: Helical and localised buckling in twisted rods: a unified analysis of the symmetric case. Nonlinear Dyn. 21, 71–99 (2000)

    Article  MATH  Google Scholar 

  9. van der Heijden G.H.M., Neukirch S., Goss V.G.A., Thompson J.M.T.: Instability and self-contact phenomena in the writhing of clamped rods. Int. J. Mech. Sci. 45, 161–196 (2003)

    Article  MATH  Google Scholar 

  10. Domokos G., Healey T.J.: Multiple helical perversions of finite intrisically curved rods. Int. J. Bifurc. Chaos 15, 871–890 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Miyazaki Y., Kondo K.: Analytical solution of spatial elastica and its application to kinking problem. Int. J. Solids Struct. 34, 3619–3636 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Atanackovic T.M., Glavardanov V.B.: Twisted axially loaded rod with shear and compressibility. Acta Mech. 119, 119–130 (1996)

    Article  MATH  Google Scholar 

  13. Atanackovic T.M., Glavardanov V.B.: Buckling of a twisted and compressed rod. Int. J. Solids Struct. 39, 2987–2999 (2002)

    Article  MATH  Google Scholar 

  14. Lurie A.I.: Analytical Mechanics. Springer, Berlin (2002)

    MATH  Google Scholar 

  15. Atanackovic T.M.: Stability Theory of Elastic rods. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  16. Eliseyev V.V.: The non-linear dynamics of elastic rods. Prikl. Mathem. Mekh. 52, 635–641 (1988)

    Google Scholar 

  17. Antman S.S.: Nonlinear Problems of Elasticity. Springer, New York (1995)

    MATH  Google Scholar 

  18. Ziegler H.: Principles of Structural Stability, 2nd edn. Birkhäuser, Basel (1977)

    MATH  Google Scholar 

  19. Golubitsky M., Schaeffer D.: Singularities and Groups in Bifurcation Theory, vol. I. Springer, New York (1985)

    Google Scholar 

  20. Chow S.-N., Hale J.K.: Methods of Bifurcation Theory. Springer, New York (1982)

    MATH  Google Scholar 

  21. Troger H., Steindl A.: Nonlinear Stability and Bifurcation Theory. Springer, Wien (1991)

    MATH  Google Scholar 

  22. Keyfitz B.L.: Classification of one-state variable bifurcation problems up to codimension seven. Dyn. Stab. Syst. 1, 1–41 (1986)

    MATH  MathSciNet  Google Scholar 

  23. Simitses G.J., Hodges D.H.: Fundamentals of Structural Stability. Butterworth-Heinemann, Amsterdam (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin B. Glavardanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glavardanov, V.B., Maretic, R.B. Stability of a twisted and compressed clamped rod. Acta Mech 202, 17–33 (2009). https://doi.org/10.1007/s00707-008-0043-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0043-5

Keywords