Abstract
We consider the problem of determining the stability boundary of an elastic rod clamped at both ends and loaded by a compressive force and a couple. The constitutive equations of the rod are such that both shear of the cross section and compressibility of the rod axis are considered. The stability boundary is given by the bifurcation points of a system of eight nonlinear first-order differential equations, obtained by using the first integrals. Depending on the parameter values the type of bifurcation is determined. The post-critical shape of the rod is obtained by the numerical integration of a system of 12 nonlinear first-order differential equations.
Similar content being viewed by others
References
Timoshenko S.P., Gere J.M.: Theory of Elastic Stability, 2nd edn. McGraw-Hill, New York (1961)
Biezeno C.B., Grammel R.: Technische Dynamik. Springer, Berlin (1953)
Beck M.: Knickung gerader Stäbe durch Druck und konservative Torsion. Ing. Archiv. 23, 231–255 (1955)
Kovari K.: Räumliche Verzweingungsprobleme des dünnen elastischen Stabes mit endlichen Verformungen. Ing. Archiv. 37, 393–416 (1969)
Antman S.S., Kenney C.S.: Large buckled states of nonlinearly elastic rods under torsion thrust and gravity. Arch. Ration. Mech. Anal. 76, 289–338 (1981)
Béda B.P., Steindl A., Troger H.: Postbuckling of a twisted prismatic rod under terminal thrust. Dyn. Stab. Syst. 7, 219–232 (1992)
Coleman B.D., Dill E.H., Lembo M., Lu Z., Tobias I.: On the dynamics of rods in the theory of Kirchhoff Clebsch. Arch. Ration. Mech. Anal. 121, 339–359 (1992)
van der Heijden G.H.M., Thompson J.M.T.: Helical and localised buckling in twisted rods: a unified analysis of the symmetric case. Nonlinear Dyn. 21, 71–99 (2000)
van der Heijden G.H.M., Neukirch S., Goss V.G.A., Thompson J.M.T.: Instability and self-contact phenomena in the writhing of clamped rods. Int. J. Mech. Sci. 45, 161–196 (2003)
Domokos G., Healey T.J.: Multiple helical perversions of finite intrisically curved rods. Int. J. Bifurc. Chaos 15, 871–890 (2005)
Miyazaki Y., Kondo K.: Analytical solution of spatial elastica and its application to kinking problem. Int. J. Solids Struct. 34, 3619–3636 (1997)
Atanackovic T.M., Glavardanov V.B.: Twisted axially loaded rod with shear and compressibility. Acta Mech. 119, 119–130 (1996)
Atanackovic T.M., Glavardanov V.B.: Buckling of a twisted and compressed rod. Int. J. Solids Struct. 39, 2987–2999 (2002)
Lurie A.I.: Analytical Mechanics. Springer, Berlin (2002)
Atanackovic T.M.: Stability Theory of Elastic rods. World Scientific, Singapore (1997)
Eliseyev V.V.: The non-linear dynamics of elastic rods. Prikl. Mathem. Mekh. 52, 635–641 (1988)
Antman S.S.: Nonlinear Problems of Elasticity. Springer, New York (1995)
Ziegler H.: Principles of Structural Stability, 2nd edn. Birkhäuser, Basel (1977)
Golubitsky M., Schaeffer D.: Singularities and Groups in Bifurcation Theory, vol. I. Springer, New York (1985)
Chow S.-N., Hale J.K.: Methods of Bifurcation Theory. Springer, New York (1982)
Troger H., Steindl A.: Nonlinear Stability and Bifurcation Theory. Springer, Wien (1991)
Keyfitz B.L.: Classification of one-state variable bifurcation problems up to codimension seven. Dyn. Stab. Syst. 1, 1–41 (1986)
Simitses G.J., Hodges D.H.: Fundamentals of Structural Stability. Butterworth-Heinemann, Amsterdam (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Glavardanov, V.B., Maretic, R.B. Stability of a twisted and compressed clamped rod. Acta Mech 202, 17–33 (2009). https://doi.org/10.1007/s00707-008-0043-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00707-008-0043-5

