Skip to main content
Log in

Falkner–Skan flows past moving boundaries: an exactly solvable case

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The Falkner–Skan flows past stretching boundaries are revisited in this paper. The usual assumption U w (x) = λ U(x), i.e. the proportionality of the stretching velocity U w (x) and the free stream velocity U(x) is adopted. For the special case of a converging channel (wedge nozzle), U(x) ~ − 1/x, exact analytical solutions in terms of elementary hyperbolic functions are reported. In the range − 2 < λ < + 1 dual solutions describing either opposing (λ < 0) or aiding (λ > 0) flow regimes were found. In the range λ > 1 unique solutions occur, while below the critical value λ c  = − 2 no solutions exist at all. The mechanical features of these solutions are discussed in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelhafez T.A.: Skin friction and heat transfer on a continuous surface moving in a parallel free stream. Int. J. Heat Mass Transf. 28, 1234–1237 (1985)

    Article  Google Scholar 

  2. Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions. US Government Printing Office, Washington DC (1973)

    Google Scholar 

  3. Abraham J.P., Sparrow E.M.: Friction drag resulting from the simultaneous imposed motions of a freestream and its bounding surface. Int. J. Heat Fluid Flow 26, 289–295 (2005)

    Article  Google Scholar 

  4. Afzal N.: Momentum transfer ort on power law stretching plate with free stream pressure gradient. Int. J. Eng. Sci. 41, 1197–1207 (2003)

    Article  Google Scholar 

  5. Afzal N., Badaruddin A., Elgarvi A.A.: Momentum and heat transport on a continuous flat surface moving in a parallel stream. Int. J. Heat Mass Transf. 36, 3399–3403 (1993)

    Article  MATH  Google Scholar 

  6. Ahmad F.: Degeneracy in the Blasius problem. Electron. J. Diff. Eqs. 79, 1–8 (2007)

    Google Scholar 

  7. Callegari A., Nachman A.: Some singular, nonlinear differential equations arising in boundary layer theory. J. Math. Anal. Appl. 64, 96–105 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. Falkner V.M., Skan S.W.: Some approximate solutions of the boundary layer equations. Phil. Mag. 12, 865–896 (1931)

    MATH  Google Scholar 

  9. Goldstein S.: On backward boundary layers and flow in converging passages. J. Fluid Mech. 21, 33–45 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hussaini M.Y., Lakin W.D.: Existence and non-uniqueness of similarity solutions of a boundary-layer problem. Q. J. Mech. Appl. Math. 39, 15–24 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hussaini M.Y., Lakin W.D., Nachman A.: On similarity solutions of a boundary layer problem with an upstream moving wall. SIAM J. Appl. Math. 47, 699–709 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ishak A., Nazar R., Pop I.: Boundary layers in the stagnation-point flow toward a stretching vertical sheet. Meccanica 41, 509–518 (2006)

    Article  Google Scholar 

  13. Klemp J.B., Acrivos A.A.: A method for integrating the boundary-layer equations through a region of reverse flow. J. Fluid Mech. 53, 177–199 (1972)

    Article  MATH  Google Scholar 

  14. Klemp J.B., Acrivos A.A.: A moving-wall boundary layer with reverse flow. J. Fluid Mech. 76, 363–381 (1976)

    Article  MATH  Google Scholar 

  15. Lin H.-T., Huang S.-F.: Flow and heat transfer of plane surfaces moving in parallel and reversely to the free stream. Int. J. Heat Mass Transf. 37, 333–336 (1994)

    MATH  Google Scholar 

  16. Magyari E.: Backward boundary layer heat transfer in a converging channel. Fluid Dyn. Res. 39, 493–504 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mahapatra T.R., Gupta A.S.: Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf. 38, 517–521 (2002)

    Article  Google Scholar 

  18. Merill K., Beauchesne M., Previte J., Paullet J., Weidman P.D.: Final steady flow near a stagnation point on a vertical surface in a porous medium. Int. J. Heat Mass Transf. 49, 4681–4686 (2006)

    Article  Google Scholar 

  19. Nazar R., Amin N., Filip D., Pop I.: Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet. Int. J. Eng. Sci. 42, 1241–1253 (2004)

    Article  MathSciNet  Google Scholar 

  20. Nazar R., Amin N., Pop I.: Unsteady mixed convection boundary layer flow near the stagnation point on a vertical surface in a porous medium. Int. J. Heat Mass Transf. 47, 2681–2688 (2004)

    Article  MATH  Google Scholar 

  21. Nield D.A., Bejan A.: Convection in Porous Media. Springer, Berlin (2006)

    Google Scholar 

  22. Pohlhausen K.: Zur näherungsweisen Integration der Differentialgleichung der laminaren Grenzschicht. J. Appl. Math. Mech. (ZAMM) 1, 252–268 (1921)

    Google Scholar 

  23. Pop I., Ingham D.B.: Convect. Heat Transf.. Pregamon, Oxford (2001)

    Google Scholar 

  24. Riley N., Weidman P.D.: Multiple solutions of the Falkner–Skan equation for flow past a stretching boundary. SIAM J. Appl. Math. 49, 1350–1358 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schlichting H., Gersten K.: Boundary layer theory. Springer, Berlin (2000)

    MATH  Google Scholar 

  26. Sparrow E.M., Abraham J.P.: Universal solution for the streamwise variation of the temperature of a moving sheet in the presence of a moving fluid. Int. J. Heat Mass Transf. 48, 3047–3056 (2005)

    Article  Google Scholar 

  27. Steinheuer J.: Die Lösung der Blasiusschen Grenzschichtdifferentialgleichung. Abhandlg. der Braunschweigischen Wiss. Ges. 20, 96–125 (1968)

    MATH  MathSciNet  Google Scholar 

  28. Weidman P.D., Kubitschek D.G., Davis A.M.J.: The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int. J. Eng. Sci 44, 730–737 (2006)

    Article  Google Scholar 

  29. Weidman, P.D., Davis, A.M.J., Kubitschek, D.G.: Crocco variable formulation for uniform shear flow over a stretching surface with transpiration: multiple solutions and stability. J. Appl. Math. Phys. (ZAMP), Online First (2006)

  30. Weyl H.: On the differential equations of the simplest boundary-layer problems. Ann. Math. 43, 381–407 (1942)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Magyari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magyari, E. Falkner–Skan flows past moving boundaries: an exactly solvable case. Acta Mech 203, 13–21 (2009). https://doi.org/10.1007/s00707-008-0031-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0031-9

Keywords

Navigation