Acta Mechanica

, Volume 203, Issue 3–4, pp 163–181 | Cite as

Wave propagation in elastic solids undergoing damage and growth process

Article

Abstract

Modeling and analysis of wave propagation in elastic solids undergoing damage and growth process are reported in this paper. Two types of diagnostic problems, (1) the propagation of waves in the presence of a slow growth process and (2) the propagation of waves in the presence of a fast growth process, are considered. The proposed model employs a slow and a fast time scale and a homogenization technique in the wavelength scale. A detailed analysis of wave dispersion is carried out. A spectral analysis reveals certain low-frequency bands, where the interaction between the wave and the growth process produces acoustic metamaterial-like behavior. Various practical issues in designing an efficient method of acousto-ultrasonic wave based diagnostics of the growth process are discussed. Diagnostics of isotropic damage in a ductile or quasi-brittle solid by using a micro-second pulsating signal is considered for computer simulations, which is to illustrate the practical application of the proposed modeling and analysis. The simulated results explain how an estimate of signal spreading can be effectively employed to detect the presence of a steady-state damage or the saturation of a process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen A.S., Almond D.P., Harris B.: In situ monitoring in real time of fatigue-induced damage growth in composite materials by acoustography. Compos. Sci. Tech. 61, 2437–2443 (2001)CrossRefGoogle Scholar
  2. 2.
    Arias I., Achenbach J.D.: A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique. Wave Motion 39, 61–75 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ting T.C.T.: Interaction of shock waves due to combined shear loadings. Int. J. Solids Struct. 5, 415–435 (1969)MATHCrossRefGoogle Scholar
  4. 4.
    Ikkurthi V.R., Chaturvedi S.: Use of different damage models for simulating impact-driven spallation in metal plates. J. Impact Eng. 30, 275–301 (2004)CrossRefGoogle Scholar
  5. 5.
    Campagne L., Doridon L., Ahzi S.: A physically based model for dynamic failure in ductile metals. Mech. Mater. 37, 869–886 (2005)CrossRefGoogle Scholar
  6. 6.
    Molinari A., Wright T.W.: A physical model for early growth of voids in ductile materials under dynamic loading. J. Mech. Phys. Solids 53, 1476–1504 (2005)MATHCrossRefGoogle Scholar
  7. 7.
    Ball J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. Proc. R. Soc. Lond. A 306, 557–611 (1982)MATHCrossRefGoogle Scholar
  8. 8.
    Huang Y., Hutchinson J.W., Tvergaard V.: Cavitation instabilities in elastic-plastic solids. J. Mech. Phys. Solids 39, 223–241 (1991)CrossRefGoogle Scholar
  9. 9.
    Petzák B., Jirásek M.: Process zone resolution by extended finite elements. Eng. Fract. Mech. 70, 957–977 (2003)CrossRefGoogle Scholar
  10. 10.
    Jendli Z., Meraghni F., Fitoussi J., Baptiste D.: Micromechanical analysis of strain rate effect on damage evolution in sheet molding compound composite. Compos. A 35, 779–785 (2004)CrossRefGoogle Scholar
  11. 11.
    Gamby D., Henaff-Gardin C., Lafarie-Frenot M.C.: Propagation of edge cracking towards the center of laminated composite plates subjected to fatigue loading. Compos. Struct. 56, 183–190 (2002)CrossRefGoogle Scholar
  12. 12.
    Spearing S.M., Beaumont P.W.R., Ashby M.F.: Fatigue damage mechanics of composite materials. II: a damage growth model. Compos. Sci. Tech. 44, 169–177 (1992)CrossRefGoogle Scholar
  13. 13.
    Burianek D.A., Giannakopolos A.E., Spearing S.M.: Modeling of facesheet crack growth in titanium-graphite hybrid laminates, Part I. Eng. Fract. Mech. 70, 775–798 (2003CrossRefGoogle Scholar
  14. 14.
    Wharmby A.W., Ellyin F., Wolodko J.D.: Observation of damage development in fiber reinforced polymer laminate under cyclic loading. Int. J. Fatigue 25, 437–446 (2003)CrossRefGoogle Scholar
  15. 15.
    Laliberté J.F., Poon C., Straznisky P.V., Fahr A.: Post-impact fatigue damage growth in fiber-metal laminates. Int. J. Fatigue 24, 249–256 (2002)CrossRefGoogle Scholar
  16. 16.
    Prahl U., Bourgeois S., Pandorf T., Aboutayeb M., Debordes O., Weichert D.: Damage parameter identification by a periodic homogenization approach. Comput. Mater. Sci. 25, 159–165 (2002)CrossRefGoogle Scholar
  17. 17.
    Hansen N.R., Schreyer H.I.: Damage deactivation. J. Appl. Mech. 62, 450–458 (1995)CrossRefGoogle Scholar
  18. 18.
    Ismar H., Schröter F., Streicher F.: Finite element analysis of damage evolution in Al/SiC composite laminates under cyclic thermomechanical loadings. Int. J. Solids Struct. 38, 127–141 (2001)MATHCrossRefGoogle Scholar
  19. 19.
    Williams K.V., Vaziri R., Poursartip A.: A physically based continuum damage mechanics model for thin laminated composite structures. Int. J. Solids Struct. 40, 2267–2300 (2003)MATHCrossRefGoogle Scholar
  20. 20.
    Garg A.K., Mahapatra D.R., Suresh S., Gopalakrishnan S., Omkar S.N.: Estimation of composite damage model parameters using spectral finite element and neural network. Compos. Sci. Tech. 40(13–14), 1729–1751 (2004)Google Scholar
  21. 21.
    Mao H., Mahadevan S.: Fatigue damage modeling of composite materials. Compos. Struct. 58, 405–410 (2002)CrossRefGoogle Scholar
  22. 22.
    Paepegem W.V., Degrieck J.: Modelling damage and permanent strain in fiber-reinforced composites under in-plane fatigue loading. Compos. Sci. Tech. 63, 677–694 (2003)CrossRefGoogle Scholar
  23. 23.
    Luke J.C.: A perturbation method for nonlinear dispersive wave problems. Proc. R. Soc. Lond. A292, 403–412 (1966)MathSciNetGoogle Scholar
  24. 24.
    Whitham G.B.: Two-timing, variational principles and waves. J. Fluid Mech. 44, 373–395 (1970)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Rocco H.O.D.: The exact expression of the Voigt profile function. J. Quant. Spectrosc. Radiat. Transf. 92(2), 231–237 (2005)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Torres M., de Espinosa F.R.M.: Ultrasonic bandgap and negative refraction. Ultrasonics 42, 787–790 (2004)CrossRefGoogle Scholar
  27. 27.
    Di Luzio G., Bažant Z.P.: Spectral analysis of localization in nonlocal and over-nonlocal materials with softening plasticity or damage. Int. J. Solids Struct. 42, 6071–6100 (2005)MATHGoogle Scholar
  28. 28.
    Khantuleva, T.A.: The shock wave as a nonequilibrium transport process, Chap. 6, High-pressure shock compression of solids VI. In: Horie, Y.Y., Davison, L., Thadani, N.N. (eds.), pp. 215–254. Springer, New York (2002)Google Scholar
  29. 29.
    Mahapatra D.R., Singhal A., Gopalakrishnan S.: A higher order finite waveguide model for spectral analysis of composite structures. Comput. Methods Appl. Mech. Eng. 195, 1116–1135 (2006)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations