Skip to main content
Log in

Some theorems in the generalized theory of thermo-magnetoelectroelasticity under Green–Lindsay’s model

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

This paper is concerned with the generalized theory of thermo-magnetoelectroelasticity in the frame of Green–Lindsay’s model which permits the propagation of waves at a finite speed. First, we establish a reciprocity relation which involves thermoelastic processes at different instants. Then we show that this relation can be used to obtain reciprocity, uniqueness, and continuous dependence theorems. The reciprocity theorem avoids both the use of the Laplace transform and the incorporation of initial conditions into the equations of motion. The uniqueness theorem is derived avoiding both the use of the definiteness assumption on the elasticity tensor and the restriction that the conductivity tensor is positive definite. We prove also that the reciprocity relation leads to a continuous dependence theorem studied on external loads and heat supply and initial data, which ensures that the mathematical model for the generalized problem is well posed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fiebig M. (2005). Revival of the magnetoelectric effect. J. Phys. D 38: 123–152

    Article  Google Scholar 

  2. Terrell D.R., Scholing J.H. and Run A.M.J.G. (1974). An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9: 1710–1714

    Article  Google Scholar 

  3. Parton V.Z. and Kudryavtsev B.A. (1988). Electromagnetoelasticity. Gordon and Breach Science Publishers, New York

    Google Scholar 

  4. Nan C.W. (1994). Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50: 6082–6088

    Article  Google Scholar 

  5. Harshe G., Dougherty J.P. and Newnham R.E. (1993). Theoretical modeling of multiplayer magnetoelectric composites. Int. J. Appl. Electromagn. Mater. 4: 145–159

    Google Scholar 

  6. Aboudi J. (2001). Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites. Smart Mater. Struct. 10: 867–877

    Article  Google Scholar 

  7. Carman G.P., Cheung K.S. and Wang D. (1995). Micro-mechanical model of a composite containing a conservative nonlinear electro-magneto-thermo-mechanical material. J. Intell. Mater. Syst. Struct. 6: 691–699

    Article  Google Scholar 

  8. Zhang Z.K. and Soh A.K. (2005). Micromechanics predictions of the effective moduli of magnetoelectroelastic composite materials. Eur. J. Mech. A/Solids 24: 1054–1067

    Article  MATH  Google Scholar 

  9. Rao S.S. and Sunar M. (1993). Analysis of distributed thermopiezoelectric sensors and actuators in advanced intelligent structures. AIAA J. 31: 1280–1286

    Article  Google Scholar 

  10. Birman V. (1996). Thermal effects on measurements of dynamic processes in composite structures using piezoelectric sensors. Smart Mater. Struct. 54: 379–385

    Article  Google Scholar 

  11. Tzou H.S. and Ye R. (1996). Pyroelectric and thermal strain effects of piezoelectric (PVDF and PZT) devices. Mech. Syst. Signal Process 10: 459–469

    Article  Google Scholar 

  12. Sunar M. and Rao S.S. (1999). Recent advances in sensing and control of flexible structures via piezoelectric materials technology. Appl. Mech. Rev. 52: 1–16

    Google Scholar 

  13. Nowacki W. (1962). Thermoelasticity. Pergamon, Oxford

    Google Scholar 

  14. Nowacki W. (2001). Dynamic Problems of Thermoelasticity. Springer, New York

    Google Scholar 

  15. Nowacki W. (1978). Some general theorems of thermopiezoelectricity. J. Therm. Stresses 1: 171–182

    Article  MathSciNet  Google Scholar 

  16. Nowacki W. (1983). Mathematical models of phenomenological piezoelectricity. In: Brulin, O. and Hsieh, R. (eds) New Problems in Mechanics of Continua, pp 30–50. University of Waterloo Press, Ontario

    Google Scholar 

  17. Coleman B.D. and Dill E.H. (1971). Thermodynamic restrictions on the constitutive equations of electromagnetic theory. Z. Angew. Math. Phys. 22: 691–702

    Article  MATH  Google Scholar 

  18. Amendola G. (2000). On thermodynamic conditions for the stability of a thermoelectromagnetic system. Math. Methods Appl. Sci. 23: 17–39

    Article  MATH  MathSciNet  Google Scholar 

  19. Amendola G. (2001). Linear stability for a thermoelectromagnetic material with memory. Q. Appl. Math. 59: 67–84

    MATH  MathSciNet  Google Scholar 

  20. Muller I.M. (1971). The coldness. A universal function in thermoelastic bodies. Arch. Ration. Mech. Anal. 41: 319–327

    Article  Google Scholar 

  21. Green A.E. and Laws N. (1972). On the entropy production inequality. Arch. Ration. Mech. Anal. 45: 47–53

    Article  MathSciNet  Google Scholar 

  22. Green A.E. and Lindsay K.A. (1972). Thermoelasticity. J. Elast. 2: 1–7

    Article  MATH  Google Scholar 

  23. Suhubi E.S. (1975). Thermoelastic solids. In: Eringen, A.C. (eds) Continuum Physics. Academic Press, New York

    Google Scholar 

  24. Lord H. and Shulman Y. (1967). A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solid 15: 299–309

    Article  MATH  Google Scholar 

  25. Hetnarski R.B. and Ignaczak J. (1999). Generalized thermoelasticity. J. Therm. Stresses 22: 451–476

    Article  MathSciNet  Google Scholar 

  26. Cicco S. and Nappa L. (1999). On the theory of thermomicrostretch elastic solids. J. Therm. Stresses 22: 565–580

    Article  Google Scholar 

  27. Marin M. (1997). Cesaro means in thermoelasticity of dipolar bodies. Acta Mech. 122: 155–168

    Article  MATH  MathSciNet  Google Scholar 

  28. Marin M. and Marinescu C. (1998). Thermoelasticity of initially stressed bodies. Asymptotic equipartition of energies. Int. J. Engng. Sci. 36: 37–86

    Article  MathSciNet  Google Scholar 

  29. Chirita S. and Quintanilla R. (1966). Spatial decay estimates of Saint-Venant type in generalized thermoelasticity. Int. J. Engng. Sci. 34: 299–311

    Article  MathSciNet  Google Scholar 

  30. Aouadi M. (2007). On the coupled theory of thermo-magnetoelectroelasticity. Q. J. Mech. Appl. Math. 60: 433–456

    Article  MathSciNet  Google Scholar 

  31. Li J.Y. (2003). Uniqueness and reciprocity theorems for linear thermo-electro-magneto-elasticity. Q. J. Mech. Apl. Math. 56: 35–43

    Article  MATH  Google Scholar 

  32. Iesan D. (2006). On the microstretch piezoelectricity. Int. J. Engng. Sci. 44: 819–829

    Article  MathSciNet  Google Scholar 

  33. Iesan D. and Quintanilla R. (2007). Some theorems in the theory of microstretch thermopiezoelectricity. Int. J. Engng. Sci. 45: 1–16

    Article  MathSciNet  Google Scholar 

  34. Aouadi, M.: Aspect of uniqueness in micropolar piezoelectric bodies. Math. Mech. Solids (2007, in press)

  35. Aouadi, M.: Some qualitative results in the linear theory of micropolar thermoelasticity for anisotropic and porous media. In: Columbus, F. (ed.) New Trends in Applied Mathematical Modeling. Nova Science Publishers, New York (2007, in press)

  36. Rionero S. and Chirita S. (1987). The Lagrange identity method in thermoelasticity. Int. J. Engng. Sci. 25: 935–947

    Article  MATH  MathSciNet  Google Scholar 

  37. Birsan M. (2006). Several results in the dynamic theory of thermoelastic Cosserat shells with voids. Mech. Res. Commun. 33: 157–176

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moncef Aouadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aouadi, M. Some theorems in the generalized theory of thermo-magnetoelectroelasticity under Green–Lindsay’s model. Acta Mech 200, 25–43 (2008). https://doi.org/10.1007/s00707-007-0576-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-007-0576-z

Keywords

Navigation