Skip to main content
Log in

Steady-state creep of a pressurized thick cylinder in both the linear and the power law ranges

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The classical solution of the steady-state creep problem for a pressurized thick-walled cylinder is based on the power law constitutive equation. Several heat resistant steels show, however, the linear dependence of the creep rate on the applied stress within a certain stress range. In this paper we apply an extended constitutive equation which includes both the linear and the power law stress dependencies. The material constants are identified for the 9Cr1MoVNb steel at 600 °C. We recall the boundary value problem of steady-state creep for the thick cylinder under the plane strain condition. We present an approximate solution illustrating the stress redistributions as a result of the creep process. The analysis shows that for the certain range of the internal pressure both the linear and the power law creep must be taken into account. In this case the results according to the extended constitutive model essentially differ from the classical ones. The obtained solution is also applied to verify the developed user-defined creep material subroutine inside a commercial finite element code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Betten J. (2005). Creep Mechanics. Springer, Berlin

    Google Scholar 

  2. Naumenko K. and Altenbach H. (2007). Modelling of Creep for Structural Analysis. Springer, Berlin

    Google Scholar 

  3. Frost H.J. and Ashby M.F. (1982). Deformation-Mechanism Maps. Pergamon, Oxford

    Google Scholar 

  4. Kloc L., Sklenička V. and Ventruba J. (2001). Comparison of low creep properties of ferritic and austenitic creep resistant steels. Mater. Sci. Engng. A319–A321: 774–778

    Article  Google Scholar 

  5. Kloc L. and Sklenička V. (2004). Confirmation of low stress creep regime in 9% chromium steel by stress change creep experiments. Mater. Sci. Engng. A387–A389: 633–638

    Article  Google Scholar 

  6. Odqvist F.K.G. (1974). Mathematical Theory of Creep and Creep Rupture. Oxford University Press, Oxford

    MATH  Google Scholar 

  7. Skrzypek J.J. (1993). Plasticity and Creep. CRC Press, Boca Raton

    MATH  Google Scholar 

  8. ABAQUS, Benchmarks Manual: ABAQUS, Inc. (2006)

  9. Leckie F.A. and Hayhurst D.R. (1977). Constitutive equations for creep rupture. Acta Metall. 25: 1059–1070

    Article  Google Scholar 

  10. Kostenko, Y., Lvov, G., Gorash, E., Altenbach, H., Naumenko, K.: Power plant component design using creep-damage analysis. In: Proceedings of IMECE2006, pp. 1–10. Chicago: ASME, IMECE2006-13710 (2006)

  11. Boyle J.T. and Spence J. (1983). Stress Analysis for Creep. Butterworth, London

    Google Scholar 

  12. Hayhurst D.R. (1972). Creep rupture under multiaxial states of stress. J. Mech. Phys. Solids 20: 381–390

    Article  Google Scholar 

  13. Hyde T.H., Sun W. and Becker A.A. (2000). Failure prediction for multi-material creep test specimens using steady-state creep rupture stress. Int. J. Mech. Sci. 42: 401–423

    Article  MATH  Google Scholar 

  14. Lee J.S., Armaki H.G., Maruyama K., Muraki T. and Asahi H. (2006). Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel. Mater. Sci. Engng. A428: 270–275

    Article  Google Scholar 

  15. Polcik P., Sailer T., Blum W., Straub S., Buršik J. and Orlová A. (1999). On the microstructural developmenr of the tempered martensitic Cr-steel P91 during long-term creep–a comparison of data. Mater. Sci. Engng. A260: 252–259

    Article  Google Scholar 

  16. Penny R.K. and Mariott D.L. (1995). Design for Creep. Chapman & Hall, London

    Google Scholar 

  17. Dyson B.F. and McLean M. (2001). Micromechanism-quantification for creep constitutive equations. In: Murakami, S. and Ohno, N. (eds) IUTAM Symposium on Creep in Structures, pp 3–16. Kluwer, Dordrecht

    Google Scholar 

  18. Kowalewski Z.L., Hayhurst D.R. and Dyson B.F. (1994). Mechanisms-based creep constitutive equations for an aluminium alloy. J. Strain Anal. 29(4): 309–316

    Article  Google Scholar 

  19. Perrin I.J. and Hayhurst D.R. (1994). Creep constitutive equations for a 0.5Cr-0.5Mo-0.25V ferritic steel in the temperature range 600–675°C. J. Strain Anal. 31(4): 299–314

    Article  Google Scholar 

  20. Odqvist F.K.G. and Hult J. (1962). Kriechfestigkeit metallischer Werkstoffe. Springer, Berlin

    Google Scholar 

  21. Backhaus G. (1983). Deformationsgesetze. Akademie-Verlag, Berlin

    Google Scholar 

  22. Becker A.A., Hyde T.H., Sun W. and Andersson P. (2002). Benchmarks for finite element analysis of creep continuum damage mechanics. Comput. Mater. Sci. 25: 34–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Altenbach.

Additional information

Dedicated to Professor Franz Ziegler on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altenbach, H., Gorash, Y. & Naumenko, K. Steady-state creep of a pressurized thick cylinder in both the linear and the power law ranges. Acta Mech 195, 263–274 (2008). https://doi.org/10.1007/s00707-007-0546-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-007-0546-5

Keywords

Navigation