Skip to main content
Log in

Analytic representation of dynamical systems using pseudo-inverse methods

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The term `analytic representation' in configuration space is often used for the representation of a physical system in terms of Lagrangians and/or Lagrange's equations. Such representations play a role in the methodological formulation for a wide variety of physical problems. We deal with two different approaches to construct Lagrangians for a number of equations. Examples cited cover both point and continuum mechanics. This work will be of special significance to those who would like to study problems of contemporary physics without being directly involved in the rigorous theory of Helmholtz for inverse variational problems. The first procedure chosen by us depends on the method of characteristics as used for solving first order partial differential equations while the second one exploits the symmetries of the Lagrangian and the equation of motion. For simple cases, both approaches are applicable without any modification. However, in more realistic situations the methods need to be supplemented by some ansatz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Courant D. Hilbert (1975) Methods of mathematical physics, Vol. I, 1st reprint Wiley Eastern Pvt. Ltd. New Delhi

    Google Scholar 

  • R. M. Santilli (1978) Foundations of theoretical mechanics I EditionNumber1 Springer New York Occurrence Handle0401.70015

    MATH  Google Scholar 

  • H. Helmholtz (1887) ArticleTitleÜber die physikalische Bedeutung des Princips der kleinsten Wirkung J. Reine Angew. Math 100 137

    Google Scholar 

  • P. J. Olver (1993) Applications of Lie groups to differential equations EditionNumber1 Springer New York Occurrence Handle0785.58003

    MATH  Google Scholar 

  • J. A. Kobussen (1979) ArticleTitleSome comments on the Lagrangian formalism for systems with general velocity dependent forces Acta Phys. Austriaca 51 293–309 Occurrence Handle553604

    MathSciNet  Google Scholar 

  • C. Leubner (1981) ArticleTitleInequivalent Lagrangians from constants of the motion Phys. Lett. A 86 68–70 Occurrence Handle10.1016/0375-9601(81)90166-3 Occurrence Handle634350

    Article  MathSciNet  Google Scholar 

  • C. C. Yan (1981) ArticleTitleConstants of motion and Hamiltonians Am. J. Phys. 49 269–270 Occurrence Handle10.1119/1.12632

    Article  Google Scholar 

  • G. Lopez (1996) ArticleTitleHamiltonians and Lagrangians for N-dimensional autonomus systems Ann. Phys. 251 363–371 Occurrence Handle0894.70010 Occurrence Handle10.1006/aphy.1996.0117

    Article  MATH  Google Scholar 

  • S. Hojman (1984) ArticleTitleSymmetries of Lagrangians and of their equations of motion J. Phys. A: Math. Gen. 17 2399–2412 Occurrence Handle10.1088/0305-4470/17/12/012 Occurrence Handle763621 Occurrence Handle0568.70019

    Article  MathSciNet  MATH  Google Scholar 

  • Morandi, G., Ferrario, C., Vecchio, G. L., Marmo, G., Rubano, C.: The inverse problem in the calculus of variations and the geometry of the tangent bundle. Phys. Rep. 188, 147–284 (1990); Ghosh, S., Shamanna, J., Talukdar, B.: Inequivalent Lagrangians for the damped harmonic oscillator. Can. J. Phys. 82, 561–567 (2004); Shamanna, J., Talukdar, B., Das, U.: Higher order point and continuum mechanics from phase-space action. Phys. Lett. A 305, 93–99 (2002).

    Google Scholar 

  • I. N. Sneddon (1957) Elements of partial differential equations McGraw-Hill New York Occurrence Handle0077.09201

    MATH  Google Scholar 

  • H. Goldstein (1998) Classical mechanics Narosa Publishing House New Delhi, India

    Google Scholar 

  • Hojman, S., Harleston, H.: Equivalent Lagrangians: multidimensional case. J. Math. Phys. 22, 1414–1419 (1981); Hojaman, S., Urrutia, L. F.: On the inverse problem of the calculus of variations. J. Math. Phys. 22, 1896–1903 (1981); Hojman, S., Sheply, L. C.: Equivalent Lagrangians. Rev. Mex. Fis. 28, 149–152 (1982); Hojman, R., Hojman, S., Sheinbaum, J.: Shortcut for constructing any Lagrangian from its equations of motion. Phys. Rev. D 28, 1333–1336 (1983).

    Google Scholar 

  • C. Caratheodory (1967) Calculus of variations and partial differential equations of the first order, Vol. 2 EditionNumber2 Holden-Day San Fransisco

    Google Scholar 

  • D. G. Currie E. J. Saletan (1966) ArticleTitleq-equivalent particle Hamiltonians. 1. The classical one-dimensional case J. Math. Phys. 7 967–974 Occurrence Handle10.1063/1.1705010 Occurrence Handle199985

    Article  MathSciNet  Google Scholar 

  • E. T. Whittaker (1952) A treatise on the analytical dynamics of particles and rigid bodies EditionNumber3 Cambridge University Press Cambridge, UK Occurrence Handle0049.40801

    MATH  Google Scholar 

  • G. Lopez (2002) ArticleTitleAbout ambiguities appearing in the study of classical and quantum harmonic oscillator Rev. Mex. Fis. 48 10–15

    Google Scholar 

  • M. Desaix D. Anderson M. Lisak (2005) ArticleTitleVariational approach to the Thomas-Fermi equation Eur. J. Phys. 25 699–705 Occurrence Handle10.1088/0143-0807/25/6/001

    Article  Google Scholar 

  • M. Lakshmanan R. Sahadevan (1993) ArticleTitlePainlevé analysis, Lie symmetries and integrability of coupled nonlinear oscillators of polynomial type Phys. Rep. 224 1–93 Occurrence Handle10.1016/0370-1573(93)90081-N Occurrence Handle1214559

    Article  MathSciNet  Google Scholar 

  • H. Bateman (1931) ArticleTitleOn dissipative systems and related variational principles Phys. Rev. 38 815–819 Occurrence Handle0003.01101 Occurrence Handle10.1103/PhysRev.38.815 Occurrence Handle1522150

    Article  MATH  MathSciNet  Google Scholar 

  • F. Riewe (1996) ArticleTitleNonconservative Lagrangian and Hamiltonian mechanics Phys. Rev. E 53 1890–1899 Occurrence Handle10.1103/PhysRevE.53.1890 Occurrence Handle1401316

    Article  MathSciNet  Google Scholar 

  • S. Okubo (1980) ArticleTitleDoes the equation of motion determine commutation relations? Phys. Rev. D 22 919–923 Occurrence Handle10.1103/PhysRevD.22.919

    Article  Google Scholar 

  • Morse, P. M., Feshbach, H.: Methods of theoretical physics, Vol. I, 2nd ed. New York: McGraw Hill Book Comp., Inc. 1953; Sarkar, P., Talukdar, B., Das, U.: Analytic representation of Newtonian systems. Hadronic J. 26, 737–748 (2003).

    Google Scholar 

  • K. B. Oldham J. Spanier (1974) The fractional calculus EditionNumber1 Academic New York Occurrence Handle0292.26011

    MATH  Google Scholar 

  • K.S. Miller B. Ross (1993) An introduction to the fractional calculus and fractional differential equations EditionNumber1 Wiley New York Occurrence Handle0789.26002

    MATH  Google Scholar 

  • D. W. Dreisigmeyer P. M. Young (2003) ArticleTitleNonconservative Lagrangian mechanics: a generalized function approach J. Phys. A: Math. Gen. 36 8297–8310 Occurrence Handle1079.70014 Occurrence Handle10.1088/0305-4470/36/30/307 Occurrence Handle2006548

    Article  MATH  MathSciNet  Google Scholar 

  • M. A. F. Sanjuan J. L. Valero M. G. Velarde (1991) ArticleTitleDissipative hydrodynamic oscillators. VII. The two-component Lorentz modal as a Duffing oscillator, and integrability Nuovo Cimento D 13 913–925 Occurrence Handle10.1007/BF02457178 Occurrence Handle1122732

    Article  MathSciNet  Google Scholar 

  • J. A. Elliott (1982) ArticleTitleNonlinear resonance in vibrating string Am. J. Phys. 50 1148–1150 Occurrence Handle10.1119/1.12896

    Article  Google Scholar 

  • T. A. Nayfeh A. F. Vakakis (1994) ArticleTitleSubharmonic travelling waves in a geometrically non-linear circular plate Int. J. Non-Linear Mech. 29 233–251 Occurrence Handle0799.73046 Occurrence Handle10.1016/0020-7462(94)90042-6

    Article  MATH  Google Scholar 

  • S. Rajsekar S. P. Raj (1996) ArticleTitleThe painlevé property, integrability and chaotic behavior of a two-coupled Duffing oscillators Pramana-J. Phys. 47 183–198 Occurrence Handle10.1007/BF02847763

    Article  Google Scholar 

  • F. Calogero A. Degasperis (1982) Spectral transforms and solitons EditionNumber1 North-Holland Amsterdam

    Google Scholar 

  • Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive discrete fibres. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973); Anderson, D.: Variational approach to nonlinear pulse propagation in optical fibres. Phys. Rev. A 27, 3135–3145 (1983); Kath, W. L., Smyth, N. F.: Soliton evolution and radiation loss for nonlinear Schrödinger equation. Phys. Rev. E 51, 1484–1492 (1995).

    Google Scholar 

  • Khawaja, U. A., Stoof, H. T. C., Hulet, R. G., Strecker, K. E., Partridge, G. B.: Bright soliton trains in trapped Bose-Einstein condensates. Phys. Rev. Lett. 89, 200404 (4 pages) (2002).

    Google Scholar 

  • K. Chadan P. C. Sabatier (1989) Inverse problems in quantum scattering theory EditionNumber2 Springer New York Occurrence Handle0681.35088

    MATH  Google Scholar 

  • C. S. Gardner J. M. Greene M. D. Kruskal R. M. Miura (1967) ArticleTitleMethod for solving the Korteweg-de Vries equation Phys. Rev. Lett. 19 1095–1097 Occurrence Handle1103.35360 Occurrence Handle10.1103/PhysRevLett.19.1095

    Article  MATH  Google Scholar 

  • V. E. Zakharov A. B. Shabat (1973) ArticleTitleExact theory of two-dimensional self-focussing and one-dimensional self-modulation of waves in nonlinear media Sov. Phys. JETP. 34 62–69 Occurrence Handle406174

    MathSciNet  Google Scholar 

  • Talukdar, B., Ghosh, S., Shamanna, J., Sarkar, P.: Inverse problem of the variational calculus for higher KdV equations. Eur. Phys. J. D 21, 105–108 (2002); Talukdar, B., Ghosh, S., Shamanna, J.: Canonical structure of the coupled KdV equations. Can. J. Phys. 82, 459–466 (2004).

    Google Scholar 

  • P. D. Lax (1968) ArticleTitleIntegrals of nonlinear equations of evolution and solitary waves Comm. Pure Appl. Math. 21 467–490 Occurrence Handle0162.41103 Occurrence Handle10.1002/cpa.3160210503 Occurrence Handle235310

    Article  MATH  MathSciNet  Google Scholar 

  • S. V. Manakov (1974) ArticleTitleOn the theory of two-dimensional stationary self-focussing of electromagnetic waves Sov. Phys. JETP. 38 248–253 Occurrence Handle389107

    MathSciNet  Google Scholar 

  • J. D. Bjorken S. D. Drell (1964) Relativistic quantum fields EditionNumber1 McGraw Hill Book company New York

    Google Scholar 

  • Olver, P. J., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53, 1900–1906 (1996); Ghosh, S., Talukdar, B., Shamanna, J.: On the bi-Hamiltonian structure of the KdV hierarchy. Czech. J. Phys. 53, 425–432 (2003).

    Google Scholar 

  • L. Yang K. Yang H. Luo (2000) ArticleTitleComplex version KdV equation and the periods solution Phys. Lett. A 267 331–334 Occurrence Handle0944.35080 Occurrence Handle10.1016/S0375-9601(00)00128-6 Occurrence Handle1764502

    Article  MATH  MathSciNet  Google Scholar 

  • R. Hirota J. Satsuma (1981) ArticleTitleSoliton solutions of a coupled Korteweg de Vries equation Phys. Lett. A 85 407–408 Occurrence Handle10.1016/0375-9601(81)90423-0 Occurrence Handle632382

    Article  MathSciNet  Google Scholar 

  • B. Talukdar S. Ghosh J. Shamanna (2004) ArticleTitleCanonical structure of the coupled KdV equations Can. J. Phys. 82 459–466 Occurrence Handle10.1139/p04-016

    Article  Google Scholar 

  • Dirac, P. A. M.: Lectures on Quantum Mechanics, 1st ed. New York: Belfer Graduate School Monograph Series No. 2, Yeshiva Univ. 1964.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Talukdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Talukdar, B., Sarkar, P. et al. Analytic representation of dynamical systems using pseudo-inverse methods. Acta Mechanica 190, 73–91 (2007). https://doi.org/10.1007/s00707-006-0401-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-006-0401-0

Keywords

Navigation