Skip to main content
Log in

Spin-up from rest in a cylinder of an electrically conducting fluid in an axial magnetic field

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Spin-up from rest in a vertically-mounted cylinder of aspect ratio unity of an electrically conducting fluid is studied numerically and analytically. A uniformly-distributed vertically-directed magnetic field is imposed. The formulation is given for the fluid dynamic and the electro-magnetic equations. Numerical solutions are obtained to the time-dependent governing equations. The evolutions of the three-component velocity field and electric current density are portrayed. The solutions for an electrically-nonconducting fluid are in accord with the classical model descriptions. The interactions of the Lorentz force and fluid dynamic forces lead to the suppression of the meridional circulation. For large interaction parameter N, where the Hartmann layer dominates, such an MHD spin-up time scale is proportional to Ha -1 E -1. This implies that the spin-up proceeds faster as Ha and E increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G. Authié T. Tagawa R. Moreau (2003) ArticleTitleBuoyant flow in long vertical enclosures in the presence of a strong horizontal magnetic field. Part 2. Finite enclosures Eur. J. Mech.-B/Fluids 22 203–220 Occurrence Handle1052.76586 Occurrence Handle10.1016/S0997-7546(03)00024-4

    Article  MATH  Google Scholar 

  • S. Choi J. W. Kim J. M. Hyun (1989) ArticleTitleTransient free surface shape of an abruptly-rotated partially-filled cylinder ASME J. Fluids Engng. 111 439–442 Occurrence Handle10.1115/1.3243665

    Article  Google Scholar 

  • S. Choi J. W. Kim J. M. Hyun (1991) ArticleTitleExperimental investigation of the flow with a free surface in an impulsively rotated cylinder ASME J. Fluids Engng. 112 245–249 Occurrence Handle10.1115/1.2909487

    Article  Google Scholar 

  • T. M. A. El-Mistakawy H. A. Attia A. A. Megahed (2000) ArticleTitleAsymptotic solution for the flow due to an infinite rotating disk in the case of large magnetic field Trans. CSME 24 515–523

    Google Scholar 

  • Y. M. Gelfgat J. Krumin M. Abricka (1999) ArticleTitleRotating magnetic fields as a means to control the hydrodynamics and heat transfer in single crystal growth processes Prog. Crystal Growth Charact. Mater. 38 59–71 Occurrence Handle10.1016/S0960-8974(99)00008-X

    Article  Google Scholar 

  • A. Y. Gelfgat P. Z. Bar-Yoseph A. Solan (2001) ArticleTitleThree-dimensional instability of axisymmetric flow in a rotating lid-cylinder enclosure J. Fluid Mech. 438 363–377 Occurrence Handle1015.76026 Occurrence Handle10.1017/S0022112001004566

    Article  MATH  Google Scholar 

  • Greenspan, H. P.: The theory of rotating fluids. Cambridge University Press 1968.

  • H. P. Greenspan (1980) ArticleTitleA note on the spin-up from rest of a stratified fluid Geophys. Astrophys. Fluid Dyn. 15 1–5

    Google Scholar 

  • A. H. Hirsa J. M. Lopez R. Miraghaie (2002) ArticleTitleSymmetry breaking to a rotating wave in a lid-driven cylinder with a free surface: experimental observation Phys. Fluids 14 L29–L32 Occurrence Handle10.1063/1.1471912

    Article  Google Scholar 

  • G. F. Homicz N. Gerber (1987) ArticleTitleNumerical model for fluid spin-up from rest in a partially filled cylinder ASME J. Fluids Engng. 109 195–197 Occurrence Handle10.1115/1.3242643

    Article  Google Scholar 

  • J. M. Hyun F. Leslie W. W. Fowlis A. Warn-Varnas (1983) ArticleTitleNumerical solutions for spin-up from rest in a cylinder J. Fluid Mech. 127 263–281 Occurrence Handle0543.76037 Occurrence Handle10.1017/S0022112083002712

    Article  MATH  Google Scholar 

  • T. Hayase J. A. C. Humphrey R. Greif (1992) ArticleTitleA consistently formulated QUICK scheme for fast and stable convergence using finite-volume iterative calculation procedures J. Comput. Phys. 98 108–118 Occurrence Handle0743.76054 Occurrence Handle10.1016/0021-9991(92)90177-Z

    Article  MATH  Google Scholar 

  • J. S. Kim T. Y. Lee (2000) ArticleTitleNumerical study on the effect of operating parameters on point defects in a silicon crystal during Czochralski growth I. Rotation effect J. Crystal Growth 219 205–217 Occurrence Handle10.1016/S0022-0248(00)00637-0

    Article  Google Scholar 

  • Moreau, R.: Magnetohydrodynamics. Kluwer Academic Publishers 1990.

  • S. V. Patankar (1980) Numerical heat transfer and fluid flow McGraw-Hill New York Occurrence Handle0521.76003

    MATH  Google Scholar 

  • T. Tagawa G. Authié R. Moreau (2002) ArticleTitleBuoyant flow in long vertical enclosures in the presence of a strong horizontal magnetic field, part 1. Fully-established flow Eur. J. Mech.-B/Fluids 21 383–398 Occurrence Handle1051.76632 Occurrence Handle10.1016/S0997-7546(02)01182-2

    Article  MATH  Google Scholar 

  • T. Tagawa H. Ozoe (1998) ArticleTitleThe natural convection of liquid metal in a cubical enclosure with various electro-conductivities of the wall under the magnetic field Int. J. Heat Mass Transf. 41 1917–1928 Occurrence Handle0962.76617 Occurrence Handle10.1016/S0017-9310(97)00313-X

    Article  MATH  Google Scholar 

  • W. B. Watkins R. G. Hussey (1973) ArticleTitleSpin-up from rest: limitations of the Wedemeyer model Phys. Fluids 16 1530 Occurrence Handle10.1063/1.1694555

    Article  Google Scholar 

  • W. B. Watkins R. G. Hussey (1977) ArticleTitleSpin-up from rest in a cylinder Phys. Fluids 20 1596 Occurrence Handle10.1063/1.861781

    Article  Google Scholar 

  • E. H. Wedemeyer (1964) ArticleTitleThe unsteady flow within a spinning cylinder J. Fluid Mech. 20 383–399 Occurrence Handle173441 Occurrence Handle10.1017/S002211206400129X

    Article  MathSciNet  Google Scholar 

  • T. Wetzel A. Muiznieks A. Muhlbauer Y. Gelfgat L. Gorbunov J. Virbulis E. Tomzig A. v. Ammon (2001) ArticleTitleNumerical model of turbulent CZ melt flow in the presence of AC and CUSP magnetic fields and its verification in a laboratory facility J. Crystal Growth 230 81–91 Occurrence Handle10.1016/S0022-0248(01)01316-1

    Article  Google Scholar 

  • Y. C. Won K. Kakimoto H. Ozoe (1999) ArticleTitleTransient three-dimensional flow characteristics of Si melt in a Czochralski configuration under a cusp-shaped magnetic field Num. Heat Transf. Part A 36 551–561 Occurrence Handle10.1080/104077899274561

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Tagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.H., Tagawa, T., Ozoe, H. et al. Spin-up from rest in a cylinder of an electrically conducting fluid in an axial magnetic field. Acta Mechanica 186, 203–220 (2006). https://doi.org/10.1007/s00707-006-0369-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-006-0369-9

Keywords

Navigation