Skip to main content
Log in

Effect of liquid and air swirl strength and relative rotational direction on the instability of an annular liquid sheet

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Instability of a swirling annular liquid sheet in swirling inner and outer air streams has been investigated by a temporal linear stability analysis. The effects of the swirling and axial motion of the liquid and the air streams, as well as the effects of relative inner and outer air swirl orientation with respect to the liquid swirl direction on the instability have been investigated. Results show that for a non-swirling liquid sheet axial inner air stream is more effective than axial outer air stream in enhancing the sheet instability. This is opposite of a swirling liquid sheet where axial outer air is more effective in promoting sheet instability compared to axially moving inner air stream. The liquid swirl has a destabilizing effect at the outer interface but has a stabilizing effect at the inner interface. At high liquid swirl Weber number, the outer air (with axial and swirl velocity components) is more effective in enhancing sheet instability compared to the inner air (with axial and swirl velocity components). To understand the effect of air swirl orientation with respect to liquid swirl direction, four possible combinations with both swirling air streams with respect to the liquid swirl direction have been considered. Results show that at high liquid swirl Weber number a combination of counter-rotating-inner air stream and co-rotating-outer air stream has the largest most unstable wave number. However, at low liquid swirl, co-inner/counter-outer combination has the largest most unstable wave number. The combination of inner and the outer air stream co-rotating with the liquid has the highest growth rate. In many combustion applications, the liquid sheet is injected in high pressure environment where the effect of high ambient pressure results in increased aerodynamic interaction due to high air density. Hence the effect of high ambient pressure is studied in terms of the dimensionless parameter of air-to-liquid density ratio. Results show significantly higher disturbance growth rates at high air pressure. However, the qualitative sheet stability behavior is similar to that at atmospheric pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Lefebvre, A. H.: Atomization and sprays. Hemisphere Publishing Corporation 1989.

  • I. S. Carvalho M. V. Heitor (1998) ArticleTitleLiquid film break-up in a model of a prefilming airblast nozzle Exp. Fluids 24 408–415 Occurrence Handle10.1007/s003480050190

    Article  Google Scholar 

  • G. Lavergne P. Trichet P. Hebrard Y. Biscos (1993) ArticleTitleLiquid sheet disintegration and atomization process on a simplified airblast atomizer J. Engng. Gas Turbines Power 115 461–466

    Google Scholar 

  • X. Li R. S. Tankin (1991) ArticleTitleOn the temporal instability of a two-dimensional viscous liquid sheet J. Fluid Mech. 226 425–443 Occurrence Handle0718.76042 Occurrence Handle10.1017/S0022112091002458

    Article  MATH  Google Scholar 

  • X. Li (1994) ArticleTitleOn the instability of plane liquid sheets in two gas streams of unequal velocities Acta Mech. 106 137–156 Occurrence Handle0855.76020 Occurrence Handle1298030 Occurrence Handle10.1007/BF01213559

    Article  MATH  MathSciNet  Google Scholar 

  • H. Q. Yang (1992) ArticleTitleAsymmetric instability of a liquid jet Phys. Fluids A4 681–689

    Google Scholar 

  • J. Shen X. Li (1996) ArticleTitleInstability of an annular viscous liquid jet Acta Mech. 114 167–183 Occurrence Handle0945.76024 Occurrence Handle10.1007/BF01170402

    Article  MATH  Google Scholar 

  • Rayleigh, L.: On the instability of jets. Proc. Lond. Math. Soc. 10(4), (1878).

  • H. B. Squire (1953) ArticleTitleInvestigation of the instability of a moving fluid film Br. J. Appl. Phys. 4 167–169 Occurrence Handle10.1088/0508-3443/4/6/302

    Article  Google Scholar 

  • Lin, S. P.: Breakup of liquid sheets and jets. Cambridge University Press 2003.

  • W. A. Sirignano C. Mehring (2000) ArticleTitleReview of theory of distortion and disintegration of liquid streams Prog. Energy Combustion Sci. 26 609–655 Occurrence Handle10.1016/S0360-1285(00)00014-9

    Article  Google Scholar 

  • J. C. Lasheras E. J. Hopfinger (2000) ArticleTitleLiquid jet instability and atomization in a coaxial gas stream Annu. Rev. Fluid Mech. 3 275–308 Occurrence Handle10.1146/annurev.fluid.32.1.275

    Article  Google Scholar 

  • J. Ponstein (1959) ArticleTitleInstability of rotating cylindrical jets Appl. Sci. Res. A8 425 Occurrence Handle108140 Occurrence Handle10.1007/BF00411768

    Article  MathSciNet  Google Scholar 

  • F. Chen J.-Y. Tsaur F. Durst S. K. Das (2003) ArticleTitleOn the axisymmetry of annular jet instabilities J. Fluid Mech. 488 355–367 Occurrence Handle1063.76554 Occurrence Handle2019670 Occurrence Handle10.1017/S002211200300497X

    Article  MATH  MathSciNet  Google Scholar 

  • N. Alleborn H. Raszillier F. Durst (1998) ArticleTitleLinear stability of non-newtonian annular liquid sheets Acta Mech. 137 33–42 Occurrence Handle10.1007/BF01313142

    Article  Google Scholar 

  • M. V. Panchagnula P. E. Sojka P. J. Santangelo (1996) ArticleTitleOn the three-dimensional instability of a swirling, annular, inviscid liquid sheet subject to unequal gas velocities Phys. Fluids 8 3300–3312 Occurrence Handle1027.76556 Occurrence Handle10.1063/1.869119

    Article  MATH  Google Scholar 

  • Y Liao S. M. Jeng M. A. Jog M. A. Benjamin (2001) ArticleTitleAdvanced sub-model for airblast atomizers J. Propulsion Power 17 411–417

    Google Scholar 

  • A. A. Ibrahim M. A. Jog S. M. Jeng (2006) ArticleTitleEffect of liquid swirl velocity profile on the instability of a swirling annular liquid sheet Atomization Spray 16 237–263 Occurrence Handle10.1615/AtomizSpr.v16.i3.10

    Article  Google Scholar 

  • C. Mehring W. A. Sirignano (2001) ArticleTitleNon-linear capillary waves on swirling, axisymmetric free liquid films Int. J. Multiphase Flow 27 1707–1734 Occurrence Handle10.1016/S0301-9322(01)00034-9 Occurrence Handle1137.76680

    Article  MATH  Google Scholar 

  • J. Cao (2003) ArticleTitleTheoretical and experimental study of atomization from an annular liquid sheet J. Automobile Engng. 217 735–734

    Google Scholar 

  • X. Jeandel C. Dumouchel (1999) ArticleTitleInfluence of the viscosity on the linear stability of an annular liquid sheet Int. J. Heat Fluid Flow 20 499–506 Occurrence Handle10.1016/S0142-727X(99)00038-7

    Article  Google Scholar 

  • Q. Du X. Li (2005) ArticleTitleEffect of gas stream swirls on the instability of viscous annular liquid jets Acta Mech. 176 61–81 Occurrence Handle1151.76474 Occurrence Handle10.1007/s00707-004-0183-1

    Article  MATH  Google Scholar 

  • Y. Liao S. M. Jeng M. A. Jog M. A. Benjamin (2000) ArticleTitleEffect of air swirl profile on the instability of a viscous liquid jet J. Fluid Mech. 424 1–20 Occurrence Handle1003.76030 Occurrence Handle10.1017/S0022112000001749

    Article  MATH  Google Scholar 

  • Y. Liao S. M. Jeng M. A. Jog M. A. Benjamin (2000) ArticleTitleInstability of an annular liquid sheet surrounded by swirling airstreams AIAA J. 38 453–460 Occurrence Handle10.2514/2.982

    Article  Google Scholar 

  • Y. Liao S. M. Jeng M. A. Jog M. A. Benjamin (1999) ArticleTitleA Comprehensive model to predict simplex atomizer performance J. Engng. Gas Turbines Power 121 285–294

    Google Scholar 

  • J. S. Chin N. K. Rizk M. K. Razan (2000) ArticleTitleEffect of inner and outer air flow characteristics on high liquid pressure preflming airblast atomization J. Propulsion Power 16 297–301

    Google Scholar 

  • A. H. Lefebvre (1980) ArticleTitleAirblast atomization Prog. Energy Combustion Sci. 6 233–261 Occurrence Handle10.1016/0360-1285(80)90017-9

    Article  Google Scholar 

  • J. M. Hogan P. S. Ayyaswamy (1985) ArticleTitleLinear stability of a viscous-inviscid interface Phys. Fluids 28 2709–2715 Occurrence Handle10.1063/1.865228

    Article  Google Scholar 

  • M. Adzic I. S. Carvalho M. V. Heitor (2001) ArticleTitleVisualization of the disintegration on an annular liquid sheet in a coaxial airblast injector at low atomizing air velocities Optical Diagnostics Engng. 5 27–38

    Google Scholar 

  • Z. W. Lian S. P. Lin (1990) ArticleTitleBreakup of a liquid jet in a swirling gas Phys. Fluids 2 2134–2139 Occurrence Handle0718.76045 Occurrence Handle10.1063/1.857799

    Article  MATH  Google Scholar 

  • W. Z. He Z. H. Jiang Q. L. Suo (2003) ArticleTitleAnalysis of energy efficiency of air in atomizing pseudoplastic liquid using a specially designed prefilming airblast atomizer Ind. Eng. Chem. Res. 42 3144–3149 Occurrence Handle10.1021/ie0210255

    Article  Google Scholar 

  • N. Dombrowski P. C. Hooper (1962) ArticleTitleThe effect of ambient density on drop formation in sprays Chem. Engng. Sci. 17 291–305 Occurrence Handle10.1016/0009-2509(62)85008-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Jog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibrahim, A.A., Jog, M.A. Effect of liquid and air swirl strength and relative rotational direction on the instability of an annular liquid sheet. Acta Mechanica 186, 113–133 (2006). https://doi.org/10.1007/s00707-006-0368-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-006-0368-x

Keywords

Navigation