Skip to main content
Log in

Slip effects on the peristaltic flow of a non-Newtonian Maxwellian fluid

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In real systems there is always a certain amount of slip, which, however, is hard to detect experimentally because of the required space resolution. In this paper, we analyze the effect of slip boundary conditions on the dynamics of fluids in porous media by studying the flow of a Newtonian and non-Newtonian Maxwellian fluid in an axisymmetric cylindrical tube (pore), in which the flow is induced by traveling transversal waves on the tube wall. Like in peristaltic pumping, the traveling transversal waves induce a net flow of the liquid inside the pore. The viscosity as well as the compressibility of the liquid is taken into account. This problem has numerous applications in various branches of science, including stimulation of fluid flow in porous media under the effect of elastic waves and studies of blood flow dynamics in living creatures. The Navier-Stokes equations for an axisymmetric cylindrical pore are solved by means of a perturbation analysis, in which the ratio of the wave amplitude to the radius of the pore is small parameter. In the second order approximation, a net flow induced by the traveling wave is calculated for various values of the compressibility of the liquid, relaxation time and Knudsen number. The calculations disclose that the compressibility of the liquid, Knudsen number of slip flow and non-Newtonian effects in presence of peristaltic transport have a strong influence of the net flow rate. The effects of all parameters of the problem are numerically discussed and graphically explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. C. T. Aarts G. Ooms (1998) ArticleTitleNet flow of compressible viscous liquids induced by traveling waves in porous media J. Engng. Math. 34 435–450 Occurrence Handle0989.76079 Occurrence Handle1657896 Occurrence Handle10.1023/A:1004314014329

    Article  MATH  MathSciNet  Google Scholar 

  • L. K. Antanovskii H. Ramkisson (1997) ArticleTitleLong wave peristaltic transport of a compressible viscous liquid in a finite pipe subject to a time-dependent pressure drop Fluid Dyn. Res. 19 115–123 Occurrence Handle10.1016/S0169-5983(96)00030-5

    Article  Google Scholar 

  • A. Jabbarzadeh J. D. Atkinson R. I. Tanner (2000) ArticleTitleEffect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of Couette shear flow between two sinusoidal walls Phys. Rev. E 61 IssueID1 690–699 Occurrence Handle10.1103/PhysRevE.61.690

    Article  Google Scholar 

  • W. Kwang H. Chu J. Fang (2000) ArticleTitlePeristaltic transport in a slip flow Euro. Phys. J. B 16 543–547 Occurrence Handle10.1007/s100510070215

    Article  Google Scholar 

  • G. C. Georgiou M. J. Crochet (1994) ArticleTitleCompressible viscous flow in slits with slip at the wall J. Rheol. 38 IssueID3 639–654 Occurrence Handle10.1122/1.550479

    Article  Google Scholar 

  • F. Lu H. P. Lee S. P. Lim (2003) ArticleTitleMechanical description of interfacial slips for quartz crystal micro balances with viscoelastic liquid loading Smart Mater. Struct. 12 881–898 Occurrence Handle10.1088/0964-1726/12/6/004

    Article  Google Scholar 

  • J. R. Castrejon-Pita J. A. Rio Particledel A. A. Castrejon-Pita G. Huelsz (2003) ArticleTitleExperimental observation of dramatic differences in the dynamic response of Newtonian and Maxwellian fluids Phys. Rev. E 68 046301 Occurrence Handle10.1103/PhysRevE.68.046301

    Article  Google Scholar 

  • M. Torralba A. A. Castrejon-Pita J. R. Castrejon-Pita G. Huelsz J. A. Rio Particledel J. Ortin (2005) ArticleTitleMeasurements of the bulk and interfacial velocity profiles in oscillating Newtonian and Maxwellian fluids Phys. Rev. E 72 016308 Occurrence Handle10.1103/PhysRevE.72.016308

    Article  Google Scholar 

  • I. J. Roa K. R. Rajagapol (1999) ArticleTitleThe effect of slip boundary conditions on the flow of fluids in a channel Acta Mech. 135 113–126 Occurrence Handle1690164 Occurrence Handle10.1007/BF01305747

    Article  MathSciNet  Google Scholar 

  • F. E. Larrode C. Housiadas Y. Drossinos (2000) ArticleTitleSlip-flow heat transfer in circular tubes Int. J. Heat Mass Transfer 43 2669–2680 Occurrence Handle0983.76079 Occurrence Handle10.1016/S0017-9310(99)00324-5

    Article  MATH  Google Scholar 

  • W. Chu (1996) ArticleTitleStokes slip flow between corrugated walls ZAMP 47 591–598 Occurrence Handle0864.76025 Occurrence Handle10.1007/BF00914873

    Article  MATH  Google Scholar 

  • K.-H. W. Chu (1999) ArticleTitleSmall-Knudsen-number flow in a corrugated tube Meccanica 34 133–137 Occurrence Handle0945.76563 Occurrence Handle10.1023/A:1004570107716

    Article  MATH  Google Scholar 

  • M. N. Kogan (1969) Rarefied gas dynamics Plenum Press New York

    Google Scholar 

  • A. Vasudeviah K. Balamurugan (1999) ArticleTitleStokes slip flow in a corrugated pipe Int. J. Engng. Sci. 37 1629–1641 Occurrence Handle10.1016/S0020-7225(98)00138-4

    Article  Google Scholar 

  • Y. Zhu S. Granick (2002) ArticleTitleLimits of the hydrodynamic no-slip boundary condition Phys. Rev. Lett 88 IssueID10 106102 Occurrence Handle10.1103/PhysRevLett.88.106102

    Article  Google Scholar 

  • F. Yin Y. C. Fung (1969) ArticleTitlePeristaltic waves in circular cylindrical tubes J. App. Mech. 36 579–587

    Google Scholar 

  • D. Tsiklauri I. Beresnev (2001) ArticleTitleNon-Newtonian effects in the peristaltic flow of a Maxwell fluid Phys. Rev. E 64 036303 Occurrence Handle10.1103/PhysRevE.64.036303

    Article  Google Scholar 

  • J. A. Rio ParticleDel M. L. Haro ParticleDe S. Whitaker (1998) ArticleTitleEnhancement in the dynamic response of a viscoelastic fluid flowing in a tube Phys. Rev. E 58 6323–6327 Occurrence Handle10.1103/PhysRevE.58.6323

    Article  Google Scholar 

  • Anderson, J. D.: Modern compressible flow with historical perspective. McGraw-Hill Publishing Co. 1990.

  • C. Y. Wang (2003) ArticleTitleStagnation flows with slip: exact solutions of the Navier-Stokes Equations ZAMP 54 184–189 Occurrence Handle1036.76005 Occurrence Handle10.1007/PL00012632

    Article  MATH  Google Scholar 

  • G. S. Beavers D. D. Joseph (1967) ArticleTitleBoundary conditions at a naturally permeable wall J. Fluid Mech. 30 197–207 Occurrence Handle10.1017/S0022112067001375

    Article  Google Scholar 

  • Nayfeh, A. H.: Perturbation methods. John Wiley & Sons 1973.

  • S. Takabatake K. Ayukawa A. Mori (1988) ArticleTitlePeristaltic pumping in circular cylindrical tubes: a numerical study of fluid transport and its efficiency J. Fluid Mech. 193 267–283 Occurrence Handle10.1017/S0022112088002149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. El-Desoky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Shehawy, E.F., El-Dabe, N.T. & El-Desoky, I.M. Slip effects on the peristaltic flow of a non-Newtonian Maxwellian fluid. Acta Mechanica 186, 141–159 (2006). https://doi.org/10.1007/s00707-006-0343-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-006-0343-6

Keywords

Navigation