Skip to main content
Log in

Crack growth in ferroelectric ceramics under electric loading

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A crack with growth in ferroelectric ceramics under purely electric loading is analyzed. The crack tip stress intensity factor for the growing crack under small scale conditions is evaluated by employing the model of nonlinear domain switching. The electrical fracture toughness is obtained from the result of the stress intensity factor. It is shown that the ferroelectric material can be either toughened or weakened as the crack grows. Fatigue crack growth in a ferroelectric material under cyclic electric loading is also examined. The incremental fatigue crack growth under cyclic electric loading is obtained numerically. The fatigue crack growth rate is affected strongly by the electrical nonlinear behavior. It is found that the curve of fatigue crack growth rate versus electric field intensity factor is linear on the log-log plot at intermediate values of the electric field intensity factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Zhang, T.-Y., Zhao, M. H., Tong, P.: Fracture of piezoelectric ceramics. Adv. Appl. Mech. 38, 147–289 (2002).

    Google Scholar 

  • McMeeking, R. M., Evans, A. G.: Mechanics of transformation-toughening in brittle materials. J. Am. Ceram. Soc. 65, 242–246 (1982).

    Google Scholar 

  • Budiansky, B., Hutchinson, J. W., Lambropoulos, J. C.: Continuum theory of dilatant transformation toughening ceramics. Int. J. Solids Struct. 19, 337–355 (1983).

    Google Scholar 

  • Zhu, T., Yang, W.: Toughness variation of ferroelectrics by polarization switch under nonuniform electric field. Acta Mater. 45, 4695–4702 (1997).

    Google Scholar 

  • Yang, W., Zhu, T.: Switch-toughening of ferroelectrics subjected to electric fields. J. Mech. Phys. Solids 46, 291–311 (1998).

    Google Scholar 

  • Zeng, X., Rajapakse, R. K. N. D.: Domain switching induced fracture toughness variation in ferroelectrics. Smart Mater. Struct. 10, 203–211(2001).

    Google Scholar 

  • Meschke, F., Kolleck, A., Schneider, G. A.: R-curve behavior of BaTiO3 due to stress-induced ferroelastic domain switching. J. Eur. Ceram. Soc. 17, 1143–1149 (1997).

    Google Scholar 

  • Kolleck, A., Schneider, G. A., Meschke, F. A.: R-curve behavior of BaTiO3- and PZT-ceramics under the influence of an electric field applied parallel to the crack front. Acta Mater. 48, 4099–4113 (2000).

    Google Scholar 

  • Fett, T., Glazounov, A., Hoffmann, M. J., Munz, D., Thun, G.: On the interpretation of different R-curves for soft PZT. Engng. Fract. Mech. 68, 1207–1218 (2001).

    Google Scholar 

  • Förderreuther, A., Thurn, G., Zimmermann, A., Aldinger, F.: R-curve effect, influence of electric field and process zone in BaTiO3- ceramics. J. Eur. Ceram. Soc. 22, 2023–2031 (2002).

    Google Scholar 

  • Cao, H., Evans, A. G.: Electric-field-induced fatigue crack growth in piezoelectrics. J. Am. Ceram. Soc. 77, 1783–1786 (1994).

    Google Scholar 

  • Weitzing, H., Schneider, G. A., Steffens, J., Hammer, M., Hoffmann, M. J.: Cyclic fatigue due to electric loading in ferroelectric ceramics. J. Eur. Ceram. Soc. 19, 1333–1337 (1999).

    Google Scholar 

  • Liu, B., Fang, D., Hwang, K. C.: Electric-field-induced fatigue crack growth in ferroelectric ceramics. Mater. Lett. 54, 442–446 (2002).

    Google Scholar 

  • Zhu, T., Yang, W.: Fatigue crack growth in ferroelectrics driven by cyclic electric loading. J. Mech. Phys. Solids 47, 81–97 (1999).

    Google Scholar 

  • Gao, H., Barnett, D. M.: An invariance property of local energy release rates in a strip saturation model of piezoelectric fracture. Int. J. Fract. 79, R25–R29 (1996).

    Google Scholar 

  • Gao, H., Zhang, T. Y., Tong, P.: Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491–510 (1997).

    Google Scholar 

  • Beom, H. G., Atluri, S. N.: Effect of electric fields on fracture behavior of ferroelectric ceramics. J. Mech. Phys. Solids 51, 1107–1125 (2003).

    Google Scholar 

  • Beom, H. K., Youn, S. K.: Electrical fracture toughness for a conducting crack in ferroelectric ceramics. Int. J. Solids Struct. 41, 145–157 (2004).

    Google Scholar 

  • Jeong, K. M., Beom, H. G.: Conducting crack growth in ferroelectric ceramics subjected to electric fields. Smart Mater. Struct. 13, 275–282 (2004).

    Google Scholar 

  • Jeong, K. M., Kim, I. O., Beom, H. G.: Effect of electric displacement saturation on the stress intensity factor for a crack in a ferroelectric ceramic. Mech. Res. Comm. 31, 373–382 (2004).

    Google Scholar 

  • Beom, H. G.: Small scale nonlinear analysis of electrostrictive crack problems. J. Mech. Phys. Solids 47, 1379–1395 (1999).

    Google Scholar 

  • Hwang, S. C., Lynch, C. S., McMeeking, R. M.: Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall. Mater. 43, 2073–2084 (1995).

    Google Scholar 

  • Rice, J. R.: Three-dimensional elastic crack tip interactions with transformation strains and dislocations. Int. J. Solids Struct. 21, 781–791 (1985).

    Google Scholar 

  • Gao, H.: Application of 3-D weight functions – I. Formulations of crack interfaces with transformation strains and dislocations. J. Mech. Phys. Solids 37, 133–153 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beom, H., Jeong, K. Crack growth in ferroelectric ceramics under electric loading. Acta Mechanica 177, 43–60 (2005). https://doi.org/10.1007/s00707-004-0198-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-004-0198-7

Keywords

Navigation