Skip to main content
Log in

TIP4P potential for lid-driven cavity flow

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The TIP4P potential is used to predict the velocity profiles in the 3-D (about 100,000 molecules) liquid water lid-driven cavity flow. The vortices in the cavity are generated with the upper side wall moving with a constant speed and investigated by the leap-frog method in the field of molecular dynamics. Two kinds of problems are investigated in this paper to demonstrate the feature of the velocity profiles and traced the particle in the system, one is the cavity flow problem with square cavity and the other is with V-shape cavity. The realistic parameters of the water molecule are adopted in this research.

In a very short time, from the velocity profiles it is evident that the vortices are driven by the moving top plate in all cases. And the turbulence-like phenomena are observed in the small triangular cavity when the calculating time is long enough. In addition, the vortex-like profiles in the triangular cavity are stronger and more obvious than the ones in the rectangular cavity. Therefore, the strength of vortex would be affected by the variation of the geometry. It emerges from that the dynamic transport properties like the thermal conductivity, diffusion coefficient and shear stress etc. would be varied by the variation of the geometry. Due to the application of results, the predicted phenomena can be applied on the nano-channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Lukes D. Y. Li X. G. Liang C. L. Tien (2000) ArticleTitleMolecular dynamics study of solid thin-film thermal conductivity Trans. ASME 122 536–543

    Google Scholar 

  2. D. X. Xiong Z. Y. Guo Z. X. Li (1996) Heat propagation study by molecular dynamics approach Tsinghua Univ Beijing 306–311

    Google Scholar 

  3. Z. Y. Guo Z. Y. Wang M. Chen (2000) Molecular dynamics study on interface properties and interphase transport B. X. Wang (Eds) Heat transfer science High Education Press Beijing 77–89

    Google Scholar 

  4. J. E. Gomez H. Power (1997) ArticleTitleA multipole direct and indirect BEM for 2D cavity flow at low Reynolds number Engng. Anal. Bound. Elem. 19 17–31 Occurrence Handle10.1016/S0955-7997(97)00021-0

    Article  Google Scholar 

  5. O. Botella R. Peyret (1998) ArticleTitleBenchmark spectral results on the lid driven cavity flow Comput. Fluidsz 27 421–433 Occurrence Handle10.1016/S0045-7930(98)00002-4

    Article  Google Scholar 

  6. S. J. Childs B. D. Reddy (1999) ArticleTitleFinite-element-simulation of the motion of a rigid body in a fluid with free surface Comput. Meth. Appl. Mech. Engng. 175 99–120 Occurrence Handle10.1016/S0045-7825(98)00322-3

    Article  Google Scholar 

  7. A. M. Grilet B. Yang B. Khomami E. S. G. Shagfeh (1999) ArticleTitleModeling of viscoelastic lid driven cavity flow using finite element simulations J Non-Newtonian Fluid Mech. 88 99–131 Occurrence Handle10.1016/S0377-0257(99)00015-4

    Article  Google Scholar 

  8. A. M. Grilet E. S. G. Shagfeh B. Khomami (2000) ArticleTitleObservations of elastic instabilities in lid-driven cavity flow J Non-Newtonian Fluid Mech. 94 15–35 Occurrence Handle10.1016/S0377-0257(00)00123-3

    Article  Google Scholar 

  9. T. S. Krasnopolskaya V. V. Meleshko G. W. M. Peters H. E. H. Meijet (1999) ArticleTitleMixing in Stokes flow in an annular wedge cavity Eur. J. Mech. B/Fluids 18 793–822 Occurrence Handle10.1016/S0997-7546(99)00119-3

    Article  Google Scholar 

  10. D. Greenspan (1997) Particle modeling Birkhäuser Boston

    Google Scholar 

  11. D. Greenspan (1999) ArticleTitleMolecular cavity flow Fluid Dyn. Res. 25 37–56 Occurrence Handle10.1016/S0169-5983(98)00029-X

    Article  Google Scholar 

  12. a. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., Klein, M. L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926-935 (1983). b. Jorgensen, W. L., Jenson, C.: Temperature dependence of TIP3P, SPC and TIP4P water from NPT Monte Carlo simulations: seeking temperatures of maximum density. J. Comp. Chem. 19, 1179-1186 (1998).

    Google Scholar 

  13. Maruyama, S.: Molecular dynamics method for microscale heat transfer. Adv. Numer. Heat Transfer (Minkowycz, W. J., Sparrow, E. M. L., eds.), vol. 2, chap. 6, pp. 189-226. New York: Taylor & Francis, 2000.

  14. N. Yoshii R. Miyauchi S. Miura S. Okazaki (2000) ArticleTitleA molecular-dynamics study of the equation of state of water using a fluctuating-charge model Chem. Phys. Lett. 317 414–420 Occurrence Handle10.1016/S0009-2614(99)01396-2

    Article  Google Scholar 

  15. T. Schlick E. Barth M. Mandziuk (1997) ArticleTitleBiomolecular dynamics at long timesteps: Bridging the timescale gap between simulation and experimentation Ann. Rev. Biophys. Struct. 26 181–222 Occurrence Handle10.1146/annurev.biophys.26.1.181

    Article  Google Scholar 

  16. H. Ogasawara B. Brena D. Nordlund M. Nyberg A. Pelmenschikov L. G. M. Pettersson A. Nilsson (2002) ArticleTitleStructure and bonding of water on Pt(111) Phys. Rev. Lett. 89 276102-1–276102-4 Occurrence Handle10.1103/PhysRevLett.89.276102

    Article  Google Scholar 

  17. M. P. Allen D. J. Tildesley (1987) Computer simulation of liquids Clarendon Press Oxford

    Google Scholar 

  18. R. W. Hockney (1970) ArticleTitleThe potential calculation and some applications Meth. Comp. Phys 9 136–211

    Google Scholar 

  19. D. Potter (1972) Computational physics Wiley New York

    Google Scholar 

  20. J. Von Neumann (1951) ArticleTitleVarious techniques used in connection with random digits US Nat. Bur. Stand. Appl. Math 12 36–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-K. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CK., Lin, D. TIP4P potential for lid-driven cavity flow. Acta Mechanica 178, 223–237 (2005). https://doi.org/10.1007/s00707-004-0110-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-004-0110-5

Keywords

Navigation